Phương pháp giải Tìm giá trị lớn nhất, nhỏ nhất của số phức (cực hay)
Bài viết Phương pháp giải Tìm giá trị lớn nhất, nhỏ nhất của số phức với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Phương pháp giải Tìm giá trị lớn nhất, nhỏ nhất của số phức.
Phương pháp giải Tìm giá trị lớn nhất, nhỏ nhất của số phức (cực hay)
Bài giảng: Các phép biến đổi cơ bản trên tập hợp số phức - Cô Nguyễn Phương Anh (Giáo viên VietJack)
1. Phương pháp giải
Để giải được các bài toán này . cần nắm được các kiên thức sau:
+ Bất đẳng thức tam giác
• |z1 + z2| ≤ |z1| + |z2|, dấu "=" khi z1 = kz2 với k ≥ 0. Dùng cho BĐT Mincopxki:
• |z1 - z2| ≤ |z1| + |z2|, dấu "=" khi z1 = kz2 với k ≤ 0. Dùng cho BĐT vecto
• |z1 + z2| ≤ ||z1| - |z2||, dấu "=" khi z1 = kz2 với k ≤ 0.
• |z1 - z2| ≤ ||z1| - |z2||, dấu "=" khi z1 = kz2 với k ≥ 0.
+ Bất đẳng thức khác
BĐT Cauchy: A2 + B2 ≥ tìm min
BĐT Bunhia Copski:
(Ax + By)2 ≤ (A2 + B2)(x2 + y2) tìm max
BĐT Mincopxki:
tìm min. Dấu = xảy ra khi
BĐT vecto
tìm min. Dấu = xảy ra khi
2. Ví dụ minh họa
Ví dụ 1: Trong các số phức z thỏa mãn điều kiện | z + 1- 5i| = | z− + 3 - i|, tìm số phức có môđun nhỏ nhất?
A. z = + i B. z = - i
C. z = - + i D. z = - i
Lời giải:
Gọi số phức z = x + yi , (x,y ∈ R) ⇒ z− = x - yi
Ta có:
|z + 1 - 5i| = |z− + 3 - i| ⇔ |x + yi + 1 - 5i| = |x - yi + 3 - i|
⇔ |(x + 1) + (y - 5)i| = |(x + 3) + (-y - 1)i|
⇔
⇔ (x + 1)2 +( y -5)2 = ( x + 3)2 + ( y + 1)2
⇔ x2 + 2x + 1 + y2 – 10y + 25
= x2 + 6x+ 9 + y2 + 2y + 1
⇔ - 4x – 12y + 16 = 0 ⇔ x + 3y – 4 = 0
⇔ x = 4 - 3y
Ta có modun của số phức z là:
|z| =
=
Đẳng thức xảy ra khi y = ⇒ x = .
Vậy min|z| = khi z = + i.
Chọn A.
Ví dụ 2: Trong các số phức z có phần thực , phần ảo không âm và thỏa mãn:
= 1 . Tìm số phức z sao cho biểu thức sau đạt giá trị lớn nhất
P = |z2 - z− 2| - (z2 - z− 2).i.[z(1 - i) + z−(1 + i)]
A. z = + i B. z = + i
C. z = + i D. z = 1 + i
Lời giải:
Điều kiện: z ≠ 1 - 2i .
Gọi số phức cần tìm là z = x + yi,(x, y ∈ R; x,y > 0)
Theo giả thiết ta có:
= 1 ⇔ |z - 3| = |z - 1 + 2i|.
⇔ |x + yi - 3| = |x + yi - 1 + 2i|
⇔ |(x - 3) + yi| = |(x - 1) + (y + 2)i|
⇔
⇔ (x – 3)2 + y2 = (x - 1)2 + ( y + 2)2
⇔ x2 – 6x + 9 + y2
= x2 – 2x + 1 + y2 + 4y + 4
⇔ - 4x – 4y + 4 = 0 ⇔ x + y – 1 = 0
Số phức liên hợp với số phức z là:
z− = x - yi ⇒ z2 - z− 2 = 4xy.i
⇒ |z2 -
z− 2| = 4xy (vì x, y không âm)
z(1 - i) + z−(1 + i) = 2x + 2y
Do đó,
P = 16x2y2 + 4xy.(2x+ 2y) = 16x2y2 + 8xy.
Đặt t = xy ⇒ 0 ≤ t ≤
=
, ta có
P = 16t2 + 8t; t ∈ [0;
] .
+ Xét hàm số f(t) = 16t2 + 8t liên tục trên [0; ] .
f'(t) = 32t + 8t; f'(t) = 0
⇔ t = 0 ∪ t = -
(loại)
f(0) = 0; f(
) =
⇒
⇔ t =
;
= 0 ⇔ t = 0
Khi t = ⇒ xy =
Lại có; x+ y – 1= 0 nên x = y = .
Vậy P đạt giá trị lớn nhất bằng
khi
z =
+
i .
Chọn C.
Ví dụ 3: Biết rằng số phức z thỏa mãn:
w = (z + 3 - i).(z− + 1 + 3i) là một số thực. Tìm giá trị nhỏ nhất của |z|?
A. √3 B. 2 C. 2√3 D. 2√2
Lời giải:
Đặt z = x + yi (x, y ), số phức liên hợp với số phức z là z− = x - yi
Ta có: w = (z + 3 - i).(z− + 1 + 3i)
⇔ w = ( x + yi + 3 - i) . ( x - yi + 1 + 3i)
⇔ w = [ (x+ 3) + (y – 1).i ].[ (x+ 1)+ ( 3- y).i ]
⇔ w = ( x+ 3).(x+ 1) + ( x + 3). (3- y).i + ( y -1). ( x+ 1)i + ( y – 1). (3- y).i2
⇔ w = x2 +4x + 3 + ( 3x - xy + 9 - 3y).i + (xy + y – x – 1).i - ( - y2 + 4y – 3)
⇔ w = ( x2 + 4x +3 + y2 – 4y + 3) + ( 3x – xy + 9 – 3y + xy + y – x – 1).i
⇔ w = (x2 + y2 + 4x - 4y + 6) + ( 2x – 2y + 8).i
Để w là một số thực khi và chỉ khi
2x - 2y + 8 = 0 hay x - y + 4 = 0
⇒ Tập hợp các điểm biểu diễn của z là đường thẳng d: x – y + 4 = 0.
M(x;y) là điểm biểu diễn của z , z có môđun nhỏ nhất khi và chỉ khi độ dài OM nhỏ nhất
Khi và chỉ khi M là hình chiếu của O trên đường thẳng d.
⇒ OM ⊥ d
* Cách 1: Đường thẳng OM có dạng:
x + y + c = 0 .
Mà điểm O(0;0) thuộc đường thẳng OM nên ta có: 0 + 0 + c = 0 ⇒ c = 0
Do đó phương trình đường thẳng OM:
x + y = 0
Khi đó, tọa độ M là nghiệm hệ phương trình :
⇒ M(-2; 2) suy ra số phức cần tìm là
z = -2 + 2i.
⇒ |z| = = 2√2
* Cách 2. Khi đó: |z| = d(O; d)
=
= 2√2
Chọn D.
Ví dụ 4: Tìm số phức z có mô đun lớn nhất thỏa mãn điều kiện |z−(1 + i) - 3 + 2i| =
A. z = + i B. z = - i
C. z = + i D. z = + i
Lời giải:
Gọi số phức thỏa mãn là z = x+ yi;
(x,y ∈ R)
⇒ z− = x - yi
Theo giả thiết ta có:
|z−(1 + i) - 3 + 2i| =
⇔ |(x - yi)(1 + i) - 3 + 2i| =
⇔ ||x + xi - yi + y - 3 + 2i|| =
⇔ |(x + y - 3) + (x - y + 2).i| =
⇔ (x + y - 3)2 + (x - y + 2)2 =
⇔ x2 + y2 + 9 + 2xy – 6x – 6y + x2 + y2 + 4 + 4x – 2xy – 4y =
⇔2x2 + 2y2 - 2x – 10y + = 0
⇔ x2 + y2 – x – 5y + = 0 (*)
Gọi M (x;y) là điểm biểu diễn của z trong mặt phẳng tọa độ Oxy.
Tọa độ M (x; y) thỏa mãn (*) nên tập hợp điểm M là đường tròn có tâm I( ; ) và bán kính
R =
* Gọi d là đường thẳng đi qua O và I. Đường thẳng d có dạng: y = kx.
Thay tọa độ điểm I ta được k = 5.
Vậy phương trình d là y = 5x.
Gọi M1, M2 là hai giao điểm của d và đường tròn (C), ta tìm được tọa độ 2 điểm đó là:
⇒ M1( ; ) và M2( ; ) .
Ta thấy
⇒ Số phức cần tìm ứng với điểm biểu diễn M1 hay z = + i .
Chọn C.
Ví dụ 5: Trong các số phức z có mô đun là 2√2 . Tìm số phức z sao cho biểu thức
P= |z + 1| + |z + i| đạt giá trị lớn nhất?
A. z = 2 + 2i B. z = 1 + √7i
C. z = 2 - 2i D. Đáp án khác
Lời giải:
Gọi số phức thỏa mãn là z = x + yi,
(x,y ∈ R)
* Theo giả thiết:
|z| = 2√2 ⇔ = 2√2 ⇔ x2 + y2 = 8
*Ta có: P = |z + 1| + |z + i|
= |x + yi + 1| + |x + yi + i|
= +
*Áp dụng bất đẳng thức Bunhia-côpxki cho hai bộ số (1;1) và , ta có:
P2 ≤ 2[(x + 1)2 + y2 + x2 + (y + 1)2]
= 2[2x2 + 2y2 + 2x + 2y + 2]
= 2(16 + 2x + 2y + 2)
= 4(9 + x + y)
* Áp dụng bất đẳng thức Bunhia-cốpxki cho hai bộ số (1;1) và (x; y), ta có:
x + y ≤ = 4
⇒ P2 ≤ 4(9 + 4) = 52 ⇒ P ≤ 2√13 .
Đẳng thức xảy ra khi x = y = 2
Vậy P đạt giá trị lớn nhất bằng 2√13 , khi đó z = 2+ 2i.
Chọn A.
3. Bài tập tự luyện
Bài 1. Cho số phức z thỏa mãn . Tìm GTLN và GTNN của .
Bài 2. Cho số phức z thỏa mãn . Tính GTNN của với số phức w = z – 2 + 2i.
Bài 3. Cho số phức z thỏa mãn . Tìm GTLN và GTNN của .
Bài 4. Cho số phức z thỏa mãn . Gọi M và m lần lượt là GTLN và GTNN của biểu thức P = . Tìm môđun của số phức w = M + mi.
Bài 5. Cho số phức z thỏa mãn . Tìm GTLN, GTNN của .
Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:
- 6 dạng bài tập số phức cơ bản trong đề thi Đại học có lời giải
- 6 dạng bài tập Căn bậc hai, Phương trình bậc hai số phức trong đề thi Đại học có lời giải
- 4 dạng bài tập Dạng lượng giác của số phức trong đề thi Đại học có lời giải
- 5 dạng bài tập Tập hợp điểm biểu diễn số phức trong đề thi Đại học có lời giải
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Lớp 12 Kết nối tri thức
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT
- Lớp 12 Chân trời sáng tạo
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST
- Lớp 12 Cánh diều
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều