Tìm giá trị nhỏ nhất, lớn nhất của số phức (Dạng 1) - Toán lớp 12



Tìm giá trị nhỏ nhất, lớn nhất của số phức (Dạng 1)

Cho số phức z thỏa mãn |z - (a + bi)| = c, (c > 0), tìm giá trị nhỏ nhất, giá trị lớn nhất của P với P = |z + z3| + |z + z4| hoặc P chứa z2, z3 (sử dụng các hằng đẳng thức đáng nhớ)

1. Phương pháp

Quảng cáo

Cách 1: PP lượng giác hóa

Vì tọa độ điểm biểu diễn là đường tròn nên đưa về dạng X2 + Y2 = 1

(Có thể sử dụng trong trường hợp tọa độ điểm biểu diễn là elip)

Đặt X = cosa; Y = sina

Khi đó P biểu diễn theo cosa và sina

Sử dụng MODE 7 khảo sát với START = 0; END = 2; STEP = Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

(Chú ý dùng lệnh Shift Mode Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án 5 - 1)

Cách 2: Sử dụng pp BĐT

BĐT Bunhia Copski: (Ax + By)2 ≤ (A2 + B2)(x2 + y2) tìm max

BĐT Mincopxki:

Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

Dấu = xảy ra khi Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

BĐT vecto:

Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

Dấu = xảy ra khi Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

2. Ví dụ minh họa

Ví dụ 1: Cho số phức z thỏa mãn |z - 1| = √2. Tìm GTLN của T = |z + i| + |z - 2 - i|

Hướng dẫn:

Ta có:

Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

Cộng (1) với (2) ta được:

|z + i|2 + |z - 2 - i|2 = 2|z - 1|2 + 4 = 8 (không đổi)

Áp dụng đẳng thức bunhia xcopki:

T2 = (|z + i| + |z - 2 - i|)2 ≤ 2(|z + i|2 + |z - 2 - i|2) = 16 => T ≤ 4

Quảng cáo

Ví dụ 2: Với 2 số phức z1, z2 thỏa mãn z1 + z2 = 8 + 6i và |z1 - z2| = 2. Tính GTLN của P = |z1| + |z2|

A. 5 + 3√5    B. 2√26    C. 4√6    D. 34 + 3√2

Hướng dẫn:

CÁCH 1: Ta có:

|z1 + z2|2 + |z1 - z2|2 = 2(|z1|2 + |z2|2) ⇔ 100 + 4 = 2(|z1|2 + |z2|2) ⇔ 52 = (|z1|2 + |z2|2)

Lại có: Áp dụng BĐT Cauchy:

Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

CÁCH 2:

Ta có:

ÁP dụng BĐT Bunhia Copski:

(Ax + By)2 ≤ (A2 + B2)(x2 + y2)

=> (|z1| + |z2|)2 ≤ 2(|z1|2 + |z2|2) = |z1| + |z2|2 + |z1| - |z2|2 = 104

=> |z1| + |z2| ≤ 2√26

Ví dụ 3: Gọi (C) là tập hợp các điểm trên mặt phẳng biểu diễn số phức z = x - 1 + yi, thỏa mãn |z| = 1 và N là điểm biểu diễn số phức z0 = 1 - i. Tìm điểm M thuộc (C) sao cho MN có độ dài lớn nhất.

Hướng dẫn:

Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

Ta có M(x; y) nằm trên đường tròn (C): (x - 1)2 + y2 = 1 tâm I(1;0)

Do N(1; -1) nằm trên đường tròn nên MN có độ dài lớn nhất khi MN là đường kính, hay I(1;0) là trung điểm của MN.

Vậy M(1; 1)

Chọn A.

Ví dụ 4: Cho hai số phức z1, z2 thỏa mãn :

Toán lớp 12 | Lý thuyết - Bài tập Toán 12 có đáp án

Tính tổng giá trị lớn nhất và giá trị nhỏ nhất của biểu thức |z1 - z2| .

A. 18     B. 6√2     C. 6     D. 3√2

Hướng dẫn:

Ta có:

|z1 - z2| = |(z1 + 3 - 4i) - (z2 + 6 - i) + (3 + 3i) ≤ |z1 + 2 - 4i| + |z2 + 6 - i| + |3 + 3i| = 3 + 3√2| = max

và |z1 - z2| = |(z1 + 3 - 4i) - (z2 + 6 - i) + (3 + 3i) ≥ |3 + 3i| - |z1 + 2 - 4i| - |z2 + 6 - i| = 3√2 - 3 = min

Do đó tổng Giá trị lớn nhất và Giá trị nhỏ nhất là 6√2

Chọn đáp án là B.

Ví dụ 5: Gọi (C) là tập hợp các điểm trên mặt phẳng biểu diễn số phức z = x - 1 + yi thỏa mãn |z| = 1 và N là điểm biểu diễn số phức z0 = 5 + 3i. M là một điểm thuộc (C) sao cho MN có độ dài bé nhất. Khi đó độ dài MN bé nhất bằng

A. 6     B. √34     C. 3√5    D. 4

Quảng cáo

Hướng dẫn:

Ta có: M(x; y) nằm trên đường tròn (C): (x - 1)2 + y2 = 1 có tâm I(1; 0) và bán kính R = 4

Do N(5, 3) nằm ngoài (C) nên MN có độ dài bé nhất khi và chỉ khi:

MN = NI - R = 5 - 1 = 4.

Chuyên đề Toán 12: Đầy đủ lý thuyết và các dạng bài tập có đáp án khác:

Ngân hàng trắc nghiệm miễn phí ôn thi THPT Quốc Gia tại khoahoc.vietjack.com

KHÓA HỌC GIÚP TEEN 2002 ĐẠT 9-10 THI THPT QUỐC GIA

Tổng hợp các video dạy học từ các giáo viên giỏi nhất - CHỈ TỪ 399K tại khoahoc.vietjack.com


so-phuc.jsp


Các loạt bài lớp 12 khác
Khóa học 12