Đáp án Đề thi Toán 11 Học kì 2 (Đề 9)



Đáp án Đề thi Toán 11 Học kì 2 (Đề 9)

Xem lại Đề kiểm tra Học kì 2 11 (Đề 9)

Phần trắc nghiệm

Câu 1: Đáp án B

Lời giải:

Quảng cáo

Ta có:

Đề kiểm tra Toán 11 có đáp án

Câu 2: Đáp án A

Lời giải:

Ta có:

Đề kiểm tra Toán 11 có đáp án

Câu 3: Đáp án B

Lời giải:

Quảng cáo

Ta có:

Đề kiểm tra Toán 11 có đáp án

Câu 4: Đáp án A

Lời giải:

Ta có:

Đề kiểm tra Toán 11 có đáp án

Câu 5: Đáp án B

Lời giải:

Ta có:

Đề kiểm tra Toán 11 có đáp án

Câu 6: Đáp án C

Lời giải:

Quảng cáo

Ta viết lại hàm số dưới dạng: y = (1-x)-1/2 từ đó suy ra:

Đề kiểm tra Toán 11 có đáp án

Phần tự luận

Bài 1:

Lời giải:

Đặt f(x) = sin1/x. Chọn hai dãy số {xn} và {yn} với:

Đề kiểm tra Toán 11 có đáp án

Bài 2:

Lời giải:

Biến đổi hàm số về dạng:

Đề kiểm tra Toán 11 có đáp án

Từ đó, suy ra:

Đề kiểm tra Toán 11 có đáp án

Vậy, hàm số có đạo hàm không phụ thuộc vào x.

Bài 3:

Lời giải:

Bạn đọc tự vẽ hình.

a. Gọi O là tâm của hình lập phương, ta có:

AQ = NC1

⇔ AQC1N là hình bình hành => NQ đi qua trung điểm của AC1 ( tức là đi qua O ).

Tương tự MP cũng đi qua O.

Vậy, ta được MP và NQ cắt nhau tại điểm O cố định, suy ra M, N, P, Q đồng phẳng và MNPQ là hình bình hành.

b. Ta có:

Đề kiểm tra Toán 11 có đáp án

=> MQ // A1B => A1B //(MNPQ)

Vậy, mặt phẳng chứa đường thẳng cố định qua O và song song với A1B. Đường thẳng này đi qua trung điểm R và S của BC và A1D1.

Ta có:

(MNPQ) // (A1BC1) => (MNPQ) // BC1 => NR // BC1 => BR/BC = C1N/CC1 => x = 1/2

Đảo lại, với x = 1/2 thì (MNPQ) // (A1BC1) .

c. Thiết diện là lục giác MRNPSQ có tâm đối xứng là O suy ra:

MQ = NP; MR = SP; NR = SQ.

Mặt khác, ta cũng có: Đề kiểm tra Toán 11 có đáp án

Kéo dài B1B một đoạn thẳng BR1= a/2 kéo dài B1A1 một đoạn thẳng A1S1= a/2. Ta được: MR = MR1 = QS = QS1 .

Khi đó, chu vi thiết diện p bằng hai lần độ dài đường gấp khúc S1QMR1. Độ dài S1QMR1 ngắn nhất khi và chỉ khi S1 , Q, M, R1 thẳng hàng.

Vậy, chu vi thiết diện ngắn nhất khi M ≡ M1 và Q ≡ Q1 với M là giao điểm của S1R1 với AB và Q là giao điểm của S1R1 với AA1, tức là M, Q theo thứ tự là trung điểm của AB, AA1, và khi đó: pMin= 6M1Q1 = 3a√2 .

Nhận xét rằng:

M ∈ AM1 => p ≤ S1A + AR1 = 2 √(AB2 + BR12) => p ≤ a√5

M ∈ BM1 => p ≤ S1A1 + A1B + BR1 = a/2 + a√2 + a/2 => p ≤ a(√2 +1)

Do a√5 < a(√2+1) nên ta suy ra p ≤ a(√2 + 1) với mọi M ∈ AB.

Vậy, ta được pMax = a(√2 + 1), đạt được khi M ≡ B và Q ≡ A1.

Bài 4:

Lời giải:

a. Ta có:

Đề kiểm tra Toán 11 có đáp án

Vậy, với a = 1và b = 1thỏa mãn điều kiện đầu bài.

b. Từ kết quả câu a), ta nhận được

Đề kiểm tra Toán 11 có đáp án

Do đó, ta dự đoán được

Đề kiểm tra Toán 11 có đáp án

Việc chứng minh dự đoán trên là đúng được thực hiện bằng phương pháp quy nạp – Đề nghị bạn đọc tự làm.

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 11

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


de-kiem-tra-toan-11-hoc-ki-2.jsp


Đề thi, giáo án lớp 11 các môn học
Tài liệu giáo viên