Giáo án Toán 11 Cánh diều Bài 1: Phép tính lũy thừa với số mũ thực
Giáo án Toán 11 Cánh diều Bài 1: Phép tính lũy thừa với số mũ thực
Chỉ từ 500k mua trọn bộ Kế hoạch bài dạy (KHBD) hay Giáo án Toán 11 Cánh diều (cả năm) bản word chuẩn kiến thức, trình bày đẹp mắt, dễ dàng chỉnh sửa:
- B1: Gửi phí vào tk:
0711000255837
- NGUYEN THANH TUYEN - Ngân hàng Vietcombank (QR) - B2: Nhắn tin tới Zalo VietJack Official - nhấn vào đây để thông báo và nhận giáo án
I. MỤC TIÊU:
1. Kiến thức:
Học xong bài này, HS đạt các yêu cầu sau:
- Nhận biết được khái niệm lũy thừa với số mũ nguyên của một số thực khác 0; lũy thừa với số mũ hữu tỉ và lũy thừa với số mũ thực của một số thực dương.
- Giải thích được các tính chất của phép tính lũy thừa với số mũ nguyên, lũy thừa với số mũ hữu tỉ và lũy thừa với số mũ thực.
- Sử dụng được tính chất của phép tính lũy thừa trong tính toán các biểu thức số và rút gọn các biểu thức chứa biến (tính viết và tính nhẩm, tính nhanh một cách hợp lí).
- Tính được giá trị biểu thức số có chứa phép tính lũy thừa bằng máy tính cầm tay.
- Giải quyết được một số vấn đề có liên quan đến môn học khác hoặc có liên quan đến thực tiễn gắn với phép tính lũy thừa (ví dụ: bài toán về lãi suất, sự tăng trưởng,…).
2. Năng lực
* Năng lực chung:
- Năng lực tự chủ và tự học trong tìm tòi khám phá
- Năng lực giao tiếp và hợp tác trong trình bày, thảo luận và làm việc nhóm
- Năng lực giải quyết vấn đề và sáng tạo trong thực hành, vận dụng.
* Năng lực riêng: Tư duy và lập luận toán học, giao tiếp toán học; mô hình hóa toán học; giải quyết vấn đề toán học.
- Tư duy và lập luận toán học: So sánh, phân tích dữ liệu, phân tích, lập luận để giải thích được các Khái niệm, tính chất của lũy thừa với số mũ hữu tỉ và lũy thừa với số mũ thực.
- Mô hình hóa toán học: Sử dụng các mô hình toán học để mô tả các tình huống thực tế liên quan đến tính lũy thừa với số mũ nguyên và hữu tỉ của số mũ hữu tỉ và số mũ thực.
- Giải quyết vấn đề toán học: Sử dụng các tính chất của lũy thừa với số mũ hữu tỉ và lũy thừa với số mũ thực để tính giá trị của biểu thức, rút gọn biểu thức, so sánh hai lũy thừa,...
- Giao tiếp toán học: Đọc, hiểu thông tin toán học.
- Sử dụng công cụ, phương tiện học toán: Sử dụng máy tính cầm tay để tính lũy thừa.
3. Phẩm chất
- Tích cực thực hiện nhiệm vụ khám phá, thực hành, vận dụng.
- Có tinh thần trách nhiệm trong việc thực hiện nhiệm vụ được giao.
- Khách quan, công bằng, đánh giá chính xác bài làm của nhóm mình và nhóm bạn.
- Tự tin trong việc tính toán; giải quyết bài tập chính xác.
II. THIẾT BỊ DẠY HỌC VÀ HỌC LIỆU
1 - GV: SGK, SGV, Tài liệu giảng dạy, giáo án PPT, PBT(ghi đề bài cho các hoạt động trên lớp), các hình ảnh liên quan đến nội dung bài học,...
2 - HS:
- SGK, SBT, vở ghi, giấy nháp, đồ dùng học tập (bút, thước,...), bảng nhóm, bút viết bảng nhóm.
III. TIẾN TRÌNH DẠY HỌC
A. HOẠT ĐỘNG KHỞI ĐỘNG (MỞ ĐẦU)
a) Mục tiêu:
- Tạo hứng thú, thu hút HS tìm hiểu nội dung bài học.
b) Nội dung: HS đọc bài toán mở đầu và thực hiện bài toán dưới sự dẫn dắt của GV (HS chưa cần giải bài toán ngay).
c) Sản phẩm: HS nắm được các thông tin trong bài toán và dự đoán câu trả lời cho câu hỏi mở đầu theo ý kiến cá nhân.
d) Tổ chức thực hiện:
Bước 1: Chuyển giao nhiệm vụ:
- GV chiếu Slide dẫn dắt và yêu cầu HS thảo luận và nêu dự đoán về câu hỏi mở đầu (chưa cần HS giải):
Ở các lớp dưới, ta đã làm quen với phép tính lũy thừa với số mũ tự nhiên của mọt số thực và các tính chất của phép tính lũy thừa đó.
Những khái niệm lữa thừa với số mũ nguyên, số mũ hữu tỉ và số mũ thực được xây dựng như thế nào? Những phép tính lũy thừa đó có tính chất gì?
Bước 2: Thực hiện nhiệm vụ: HS quan sát và chú ý lắng nghe, thảo luận nhóm và thực hiện yêu cầu theo dẫn dắt của GV.
Bước 3: Báo cáo, thảo luận: GV gọi đại diện một số thành viên nhóm HS trả lời, HS khác nhận xét, bổ sung.
Bước 4: Kết luận, nhận định: GV ghi nhận câu trả lời của HS, trên cơ sở đó dẫn dắt HS vào tìm hiểu bài học mới: “Lũy thừa với số mũ thực có rất nhiều ứng dụng trong thực tế. Ví dụ, trong vật lý, chúng ta có thể sử dụng lũy thừa với số mũ thực để tính tốc độ, gia tốc,... Trong hóa học, chúng ta có thể sử dụng lũy thừa với số mũ thực để tính nồng độ dung dịch,... Trong toán học, chúng ta có thể sử dụng lũy thừa với số mũ thực để giải các bài toán về hàm số,... Trong bài học hôm nay, chúng ta sẽ tìm hiểu về các phép tính lũy thừa với số mũ thực”.
Phép tính lũy thừa với số mũ thực
B. HÌNH THÀNH KIẾN THỨC MỚI
Hoạt động 1: Phép tính lũy thừa với số mũ hữu tỉ
a) Mục tiêu:
- HS nhận biết được khái niệm lũy thừa với số mũ nguyên của một số thực khác 0.
- HS tính được lũy thừa với số mũ nguyên.
- Sử dụng được tính chất của phép tính lũy thừa trong tính toán các biểu thức số.
- Nắm được khái niệm căn bậc và các tính chất của căn bậc
- Nắm được định nghĩa lũy thừa với số mũ hữu tỷ và vận dụng để thực hiện các bài tập rút gọn biểu thức.
b) Nội dung:
- HS đọc SGK, nghe giảng, thực hiện các nhiệm vụ được giao, suy nghĩ trả lời câu hỏi, thực hiện HĐ1, 2, 3, 4; Luyện tập 1, 2, 3, 4 và các Ví dụ.
c) Sản phẩm: HS hình thành được kiến thức bài học, câu trả lời của HS cho các câu hỏi, HS nắm được khái niệm lũy thừa với số mũ nguyên của một số thực khác 0; lũy thừa với số mũ nguyên; khái niệm căn bậc và các tính chất của căn bậc định nghĩa lũy thừa với số mũ hữu tỷ.
d) Tổ chức thực hiện:
HĐ CỦA GV VÀ HS |
SẢN PHẨM DỰ KIẾN |
Bước 1: Chuyển giao nhiệm vụ: NV1: Tìm hiểu phép tính lũy thừa với số mũ nguyên - GV triển khai HĐ1 cho HS đọc và thực hiện các yêu cầu. + GV chỉ định một số HS trình bày về định nghĩa lũy thừa bậc của ? + HS trả lời câu hỏi: Kết quả của Từ đó xác định lũy thừa bậc 0 của GV hướng dẫn HS sử dụng kết quả đã biết về lũy thừa với số mũ nguyên dương để có kết quả: Với thì Từ đó HS phát biểu Định nghĩa lũy thừa với số mũ nguyên âm. - GV tổng kết: Với số thực ta đã xác định được lũy thừa với số mũ nguyên Trong biểu thức ta gọi là cơ số, số nguyên là mũ. - GV lưu ý cho HS về trường hợp và mà HS hay nhầm. |
I. Phép tính lũy thừa với số mũ hữu tỉ 1. Phép tính lũy thừa với số mũ nguyên HĐ1 a) Cho là một số nguyên dương. Với là số thực tùy ý, lũy thừa bậc của là tích của thừa số b) Với thì Định nghĩa Cho số thực khác và số nguyên dương Ta đặt - Ta đã xác định được ở đó là số thực tùy ý khác và là một số nguyên. Trong biểu thức ta gọi là cơ số, số nguyên là số mũ. Chú ý: + và ( nguyên dương) không có nghĩa. + Lũy thừa với số mũ nguyên có các tính chất tương tự của lũy thừa với số mũ nguyên dương. |
................................
................................
................................
Trên đây tóm tắt một số nội dung miễn phí trong bộ Giáo án Toán 11 Cánh diều năm 2024 mới nhất, để mua tài liệu đầy đủ, Thầy/Cô vui lòng xem thử:
Xem thêm các bài soạn Giáo án Toán lớp 11 Cánh diều chuẩn khác:
Giáo án Toán 11 Bài 4: Phương trình, bất phương trình mũ và lôgarit
Giáo án Toán 11 Bài 1: Định nghĩa đạo hàm. Ý nghĩa hình học của đạo hàm
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giáo án lớp 11 (các môn học)
- Giáo án điện tử lớp 11 (các môn học)
- Giáo án Toán 11
- Giáo án Ngữ văn 11
- Giáo án Tiếng Anh 11
- Giáo án Vật Lí 11
- Giáo án Hóa học 11
- Giáo án Sinh học 11
- Giáo án Lịch Sử 11
- Giáo án Địa Lí 11
- Giáo án KTPL 11
- Giáo án HĐTN 11
- Giáo án Tin học 11
- Giáo án Công nghệ 11
- Giáo án GDQP 11
- Đề thi lớp 11 (các môn học)
- Đề thi Ngữ Văn 11 (có đáp án)
- Chuyên đề Tiếng Việt lớp 11
- Đề cương ôn tập Văn 11
- Đề thi Toán 11 (có đáp án)
- Đề thi Toán 11 cấu trúc mới
- Đề cương ôn tập Toán 11
- Đề thi Tiếng Anh 11 (có đáp án)
- Đề thi Tiếng Anh 11 mới (có đáp án)
- Đề thi Vật Lí 11 (có đáp án)
- Đề thi Hóa học 11 (có đáp án)
- Đề thi Sinh học 11 (có đáp án)
- Đề thi Lịch Sử 11
- Đề thi Địa Lí 11 (có đáp án)
- Đề thi KTPL 11
- Đề thi Tin học 11 (có đáp án)
- Đề thi Công nghệ 11
- Đề thi GDQP 11 (có đáp án)