Hoán vị, chỉnh hợp và tổ hợp (Lý thuyết Toán lớp 10) - Chân trời sáng tạo

Với tóm tắt lý thuyết Toán 10 Bài 2: Hoán vị, chỉnh hợp và tổ hợp sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 10.

Hoán vị, chỉnh hợp và tổ hợp (Lý thuyết Toán lớp 10) - Chân trời sáng tạo

Lý thuyết Hoán vị, chỉnh hợp và tổ hợp

1. Hoán vị

Quảng cáo

– Cho tập hợp A có n phần tử (n ≥ 1).

Mỗi cách sắp xếp n phần tử của A theo một thứ tự gọi là một hoán vị các phần tử đó (gọi tắt là hoán vị của A hay của n phần tử).

Kí hiệu Pn là số hoán vị của n phần tử.

– Số các hoán vị của n phần tử (n ≥ 1) bằng:

Pn = n(n – 1)(n – 2)….2. 1.

Chú ý:

+ Ta đưa vào kí hiệu n! = n(n – 1)(n – 2)…. 2. 1 và đọc là n giai thừa hoặc giai thừa của n.

Khi đó Pn= n!.

+ Quy ước: 0! = 1.

Ví dụ: Có thể lập được bao nhiêu số có 6 chữ số khác nhau từ các chữ số 1; 2; 3; 5; 6; 7? Trong những số đó có bao nhiêu số lẻ?

Quảng cáo


Hướng dẫn giải

• Mỗi số tự nhiên có 6 chữ số khác nhau được lập từ 6 chữ số 1; 2; 3; 5; 6; 7 là một hoán vị của 6 chữ số này. Do đó, số số tự nhiên có 6 chữ số khác nhau lập được là:

P6 = 6! = 6. 5. 4. 3. 2. 1 = 720 (số).

Vậy lập được 720 số.

Ta lập số tự nhiên lẻ có 6 chữ số khác nhau từ các chữ số 1; 2; 3; 5; 6; 7.

• Bước 1: Chọn chữ số hàng đơn vị là chữ số lẻ.

Có 4 cách chọn (chọn một trong các chữ số 1; 3; 5; 7).

Bước 2: Chọn năm chữ số còn lại.

Có P5 = 5! cách chọn.

Từ đó, theo quy tắc nhân, số số tự nhiên lẻ có sáu chữ số khác nhau lập từ các chữ số đã cho là:

4.5! = 480 (số).

Quảng cáo

2. Chỉnh hợp

– Cho tập hợp A có n phần tử (n ≥ 1) và số nguyên k với 1 ≤ k ≤ n.

Mỗi cách lấy k phần tử của A và sắp xếp chúng theo một thứ tự gọi là một chỉnh hợp chập k của n phần tử đó.

Kí hiệu Anklà số chỉnh hợp chập k của n phần tử.

– Số các chỉnh hợp chập k của n phần tử (1 ≤ k ≤ n) bằng:

Ank = n(n – 1)(n – 2) ….(n – k + 1) = n!nk!.

Nhận xét: Mỗi hoán vị của n phần tử cũng chính là chỉnh hợp chập n của n phần tử đó.

Ta có Pn=Ann, n ≥ 1.

Ví dụ: Trên bàn có 10 quả cam to nhỏ khác nhau. Chọn 3 quả cam trong 10 quả đó, và đặt mỗi quả vào một giỏ nhựa khác nhau. Hỏi có bao nhiêu cách chọn 3 quả cam đó.

Quảng cáo

Hướng dẫn giải

Mỗi cách chọn 3 quả cam trong 10 quả cam đó và đặt vào 3 giỏ nhựa được gọi là một chỉnh hợp chập 3 của 10 quả cam. Ta thấy số các chỉnh hợp này bằng:

A103 = 10. 9. 8 = 720.

Vậy có 720 cách chọn 3 quả cam đó.

3. Tổ hợp

– Cho tập hợp A có n phần tử (n ≥ 1).

Mỗi tập con gồm k phần tử (1 ≤ k ≤ n) của A được gọi là một tổ hợp chập k của n phần tử.

Kí hiệu Cnk là số tổ hợp chập k của n phần tử (1 ≤ k ≤ n).

– Số các tổ hợp chập k của n phần tử (1 ≤ k ≤ n) bằng:

Hoán vị, chỉnh hợp và tổ hợp (Lý thuyết Toán lớp 10) | Chân trời sáng tạo

Chú ý: Người ta quy ước Cn0=1.

Nhận xét: Cnk=Cnnk(0 ≤ k ≤ n).

Ví dụ: Lớp 10A có 20 học sinh. Trong tuần sau có 5 bạn được cử đi dự đại hội Đoàn Thanh niên. Hỏi có bao nhiêu cách chọn 5 bạn học sinh trong lớp đi dự đại hội Đoàn Thanh niên?

Hướng dẫn giải

Mỗi cách chọn 5 bạn học sinh trong lớp từ 20 bạn học sinh là một tổ hợp chập 5 của 20 học sinh. Do đó số cách chọn 5 bạn học sinh trong lớp đi dự đại hội Đoàn Thanh niên là:

C205=20!5!.15! = 15 504 (cách).

Vậy có 15 504 cách chọn 5 bạn học sinh trong lớp đi dự đại hội Đoàn Thanh niên.

Ví dụ: Tính:

Hoán vị, chỉnh hợp và tổ hợp (Lý thuyết Toán lớp 10) | Chân trời sáng tạo

Hướng dẫn giải

Hoán vị, chỉnh hợp và tổ hợp (Lý thuyết Toán lớp 10) | Chân trời sáng tạo

4. Tính số các hoán vị, chỉnh hợp, tổ hợp bằng máy tính cầm tay

Với một số máy tính cầm tay, ta có thể tính toán nhanh các số các hoán vị, chỉnh hợp và tổ hợp.

Ví dụ:

Để tính P10 ta ấn liên tiếp các phím:

Hoán vị, chỉnh hợp và tổ hợp (Lý thuyết Toán lớp 10) | Chân trời sáng tạo

Ta nhận được kết quả là 3 628 800.

• Để tính A64 ta ấn liên tiếp các phím:

Hoán vị, chỉnh hợp và tổ hợp (Lý thuyết Toán lớp 10) | Chân trời sáng tạo

Ta nhận được kết quả là 360.

• Để tính C84 ta ấn liên tiếp các phím:

Hoán vị, chỉnh hợp và tổ hợp (Lý thuyết Toán lớp 10) | Chân trời sáng tạo

Ta nhận được kết quả là 70.

Bài tập Hoán vị, chỉnh hợp và tổ hợp

Bài 1. Có 6 chiếc ghế ở trong một phòng học. Hỏi có 6 học sinh ngồi vào thì có bao nhiêu cách xếp? Nếu có một bạn An (có trong 6 học sinh trên) muốn ngồi vào chiếc ghế ngoài cùng bên trái thì có bao nhiêu cách xếp?

Hướng dẫn giải

• Mỗi cách xếp 6 học sinh vào 6 chiếc ghế là một hoán vị của 6 học sinh. Do đó, số cách sắp xếp 6 học sinh vào 6 chiếc ghế trống là:

P6 = 6! = 720 cách.

Vậy có 720 cách xếp 6 học sinh vào 6 ghế trống.

• Bạn An muốn ngồi vào chiếc ghế ngoài cùng bên trái nên chỉ còn 5 ghế trống và 5 học sinh.

Do đó, số cách xếp 5 học sinh vào 5 chiếc ghế trống là:

P5 = 5! = 120 cách.

Vậy bạn An muốn ngồi vào chiếc ghế bên trái cùng thì có 120 cách xếp.

Bài 2. Trong một đại hội Đoàn gồm có 10 ứng viên. Người ta cần bầu ra một chủ tịch, một phó chủ tịch, một ủy viên và một thư kí. Hỏi có bao nhiêu khả năng có thể về kết quả bầu này?

Hướng dẫn giải

Mỗi cách chọn 4 người trong số 10 ứng viên để vào 4 vị trí (chủ tịch, phó chủ tịch, ủy viên và thư kí) là một chỉnh hợp chập 4 của 10 ứng viên. Do đó có số khả năng có thể về kết quả bầu này là:

A104 = 10!4! = 5 040.

Vậy có 5 040 khả năng có thể về kết quả bầu.

Bài 3. Chọn ngẫu nhiên 3 số tự nhiên trong tập hợp các số tự nhiên có 2 chữ số chia hết cho 10. Hỏi có bao nhiêu cách chọn 3 số tự nhiên đó.

Hướng dẫn giải

Các số tự nhiên có 2 chữ số chia hết cho 10 là: 10; 20; 30; …; 90.

Do đó có 9 số tự nhiên có 2 chữ số chia hết cho 10.

Mỗi cách chọn 3 số trong 9 số tự nhiên ở trên là một tổ hợp chập 3 của 9 số tự nhiên. Do đó, số cách chọn 3 số trong 9 số này là:

C93 = 9!3!.6!= 84 cách.

Vậy có 84 cách chọn 3 số tự nhiên trong tập hợp các số tự nhiên có 2 chữ số chia hết cho 10.

Bài 4. Sử dụng máy tính cầm tay để tính biểu thức sau: P5+A83.C74.

Hướng dẫn giải

Ta ấn lần lượt các phím sau:

5 ; Shift ; x1 ; + ; 8 ; Shift ; × ; 3; × ; 7 ; Shift ; ÷ ; 4; =.

Hoán vị, chỉnh hợp và tổ hợp (Lý thuyết Toán lớp 10) | Chân trời sáng tạo

Ta được kết quả là: 11880.

Bài 5. Trong một chiếc hộp đựng 6 viên bi đỏ, 8 viên bi xanh, 10 viên bi trắng. Có bao nhiêu cách chọn ra 4 viên bi trong mỗi trường hợp sau:

a) 4 viên bi có màu bất kì.

b) 4 viên bi được chọn có đúng hai viên bi màu trắng.

Hướng dẫn giải

a) Có tất cả: 6 + 8 + 10 = 24 viên bi trong hộp.

Chọn ra 4 viên bi trong tổng số 24 viên bi là tổ hợp chập 4 của 24.

Do đó số cách chọn ra 4 viên bi có màu bất kì trong hộp là: C244=10626 (cách).

Vậy có 10 626 cách chọn ra 4 viên bi có màu bất kì.

b) Chọn ra 4 viên bi trong đó có đúng hai viên bi màu trắng ta chia làm hai công đoạn:

Công đoạn 1: chọn ra 2 viên bi màu trắng trong 10 viên bi màu trắng là tổ hợp chập 2 của 10. Do đó có C102=45 (cách).

Công đoạn 1: chọn ra 2 viên bi trong 14 viên bi còn lại là tổ hợp chập 2 của 14. Do đó có C142=91 (cách).

Theo quy tắc nhân ta có: 45.91= 4 095 cách chọn ra 4 viên bi trong đó có đúng 2 viên bi màu trắng.

Học tốt Hoán vị, chỉnh hợp và tổ hợp

Các bài học để học tốt Hoán vị, chỉnh hợp và tổ hợp Toán lớp 10 hay khác:

Xem thêm tóm tắt lý thuyết Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 10 Chân trời sáng tạo khác
Tài liệu giáo viên