Trắc nghiệm bài toán tổ hợp trong hình học - Toán lớp 11



Chuyên đề: Tổ hợp

Trắc nghiệm bài toán tổ hợp trong hình học

Bài 1: Trong mặt phẳng cho 2010 điểm phân biệt sao cho ba điểm bất kì không thẳng hàng. Hỏi: Có bao nhiêu véc tơ khác véc tơ – không có điểm đầu và điểm cuối thuộc 2010 điểm đã cho.

A. 4039137        B. 4038090        C. 4167114        D. 167541284

Đáp án: B

Mỗi véc tơ thỏa yêu cầu bài toán ứng với một chỉnh hợp chập 2 của 2010, nên số véc tơ cần tìm là: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 2: Có bao nhiêu tam giác mà ba đỉnh của nó thuộc vào 2010 điểm đã cho.

A. 141427544        B. 1284761260        C. 1351414120        D. 453358292

Đáp án: C

Mỗi tam giác thỏa yêu cầu bài toán ứng với một tổ hợp chập 3 của 2010, nên số tam giác cần tìm là: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 3: Số tam giác xác định bởi các đỉnh của một đa giác đều 10 cạnh là:

A. 35.        B.120.        C.240.        D.720.

Đáp án: B

Chọn B.

Cứ ba đỉnh của đa giác sẽ tạo thành một tam giác.

Chọn 3 trong 10 đỉnh của đa giác, có Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Vậy có 120 tam giác xác định bởi các đỉnh của đa giác 10 cạnh.

Bài 4: Nếu tất cả các đường chéo của đa giác đều 12 cạnh được vẽ thì số đường chéo là:

A.121.        B.66.        C. 132.        D.54.

Đáp án: D

Chọn D.

Cứ 2 đỉnh của đa giác sẽ tạo thành một đoạn thẳng (bao gồm cả cạnh đa giác và đường chéo).

Khi đó có Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án cạnh.

Số đường chéo là: 66 – 12 = 54.

Bài 5: Nếu một đa giác đều có 44 đường chéo, thì số cạnh của đa giác là:

A. 11.        B.10.        C.9.        D.8.

Đáp án: A

Cứ hai đỉnh của đa giác n (n ∈ N,n ≥ 3) đỉnh tạo thành một đoạn thẳng (bao gồn cả cạnh đa giác và đường chéo).

Khi đó số đường chéo là:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Vậy số cạnh của đa giác đó là 11. Chọn A.

Bài 6: Một đa giác đều có số đường chéo gấp đôi số cạnh. Hỏi đa giác đó có bao nhiêu cạnh?

A. 5.        B. 6.        C.7.        D.8.

Đáp án: C

Đa giác có n (n ∈ N,n ≥ 3).

Số đường chéo trong đa giác là: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Vậy số cạnh của đa giác đó là 7. Chọn C.

Bài 7: Mười hai đường thẳng có nhiều nhất bao nhiêu giao điểm?

A. 12.        B. 66.        C.132.        D. 144.

Đáp án: B

Chọn B.

Để được nhiều giao điểm nhất thì mười hai đường thẳng này phải đôi một cắt nhau tại các điểm phân biệt.

Như vậy có Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 8: Cho hai đường thẳng d1 và d2 song song với nhau. Trên d1 có 10 điểm phân biệt, trên d2 có n điểm phân biệt ( ). Biết có 2800 tam giác có đỉnh là các điểm nói trên. Tìm n?

A. 20        B. 21        C. 30        D. 32

Đáp án: A

Chọn A.

Tam giác cần lập thuộc hai loại

Loại 1: Tam giác có một đỉnh thuộc d1 và hai đỉnh thuộc d2. Loại này có Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Loại 2: Tam giác có một đỉnh thuộc d2 và hai đỉnh thuộc d1. Loại này có Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Theo bài ra ta có:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 9: Cho đa giác đều A1A2....A2n nội tiếp trong đường tròn tâm O. Biết rằng số tam giác có đỉnh là 3 trong 2n điểm A1A2....A2n gấp 20 lần so với số hình chữ nhật có đỉnh là 4 trong 2n điểm A1A2....A2n. Tìm n?

A. 3        B. 6        C. 8        D. 12

Đáp án: C

Chọn C.

Số tam giác có các đỉnh là 3 trong 2n điểm A1A2....A2n là: Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Ta thấy ứng với hai đường chéo đi qua tâm O của đa giác A1A2....A2n cho tương ứng một hình chữ nhật có 4 đỉnh là 4 điểm trong 2n điểm A1A2....A2n và ngược lại mỗi hình chữ nhật như vậy sẽ cho tương ứng hai đường chéo đi qua tâm O của đa giác. Mà số đường chéo đi qua tâm của đa giác là n nên số hình chữ nhật có đỉnh là 4 trong 2n điểm bằng Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Theo giả thiết:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Bài 10: Trong mặt phẳng cho n điểm, trong đó không có 3 điểm nào thẳng hàng và trong tất cả các đường thẳng nối hai điểm bất kì, không có hai đường thẳng nào song song, trùng nhau hoặc vuông góc. Qua mỗi diểm vẽ các đường thẳng vuông góc với các đường thẳng được xác định bởi 2 trong n - 1 điểm còn lại. Số giao điểm của các đường thẳng vuông góc giao nhau là bao nhiêu?

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Đáp án: D

Chọn D.

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Ta chia các điểm trùng nhau thành 3 loại

* Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

* Qua A1, A2, A3 có 3 đường thẳng cùng vuông góc với A4A5 và 3 đường thẳng này song song với nhau, nên ta mất 3 giao điểm, do đó trong TH này ta phải loại đi Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

* Trong mỗi tam giác thì ba đường cao chỉ có một giao điểm, nên ta mất 2 điểm cho mỗi tam giác, do đó trường hợp này ta phải trừ đi Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Vậy số giao điểm nhiều nhất có được là:

Chuyên đề Toán lớp 11 | Chuyên đề: Lý thuyết - Bài tập Toán 11 có đáp án

Xem thêm các dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác:

Ngân hàng trắc nghiệm lớp 11 tại khoahoc.vietjack.com

KHÓA HỌC GIÚP TEEN 2003 ĐẠT 9-10 THI THPT QUỐC GIA

Tổng hợp các video dạy học từ các giáo viên giỏi nhất - CHỈ TỪ 399K tại khoahoc.vietjack.com

Toán 11 - Thầy Nguyễn Quý Huy

4.5 (243)

799,000đs

599,000 VNĐ

Ngữ văn lớp 11 - cô Hương Xuân

4.5 (243)

799,000đ

599,000 VNĐ

Tiếng Anh lớp 11 - Thầy Vũ Việt Tiến

4.5 (243)

799,000đ

599,000 VNĐ

Vật Lý lớp 11 - Thầy Võ Thanh Được

4.5 (243)

799,000đs

599,000 VNĐ

Hóa Học lớp 11 - cô Lê Thúy Hằng

4.5 (243)

799,000đ

599,000 VNĐ

Đã có app VietJack trên điện thoại, giải bài tập SGK, soạn văn, văn mẫu.... Tải App để chúng tôi phục vụ tốt hơn.

Tải App cho Android hoặc Tải App cho iPhone

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


to-hop.jsp