Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Bài viết Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng.

Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Bài giảng: Cách viết phương trình đường thẳng cơ bản - Cô Nguyễn Phương Anh (Giáo viên VietJack)

A. Phương pháp giải

Quảng cáo

- Cho hai đường thẳng d, d’ có vectơ chỉ phương Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Góc φ giữa hai đường thẳng được tính theo công thức:

Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

- Cho đường thẳng d có vectơ chỉ phương Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng và mặt phẳng (P) có vectơ pháp tuyến Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Góc φ giữa đường thẳng d và mặt phẳng (P) được tính theo công thức:

Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

B. Ví dụ minh họa

Ví dụ: 1

Tính cosin góc giữa đường thẳng d với trục Ox biết Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

A. Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

B. Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

C. Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

D. Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Lời giải:

Đường thẳng d có vecto chỉ phương Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Trục Ox có vecto chỉ phương Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Cosin góc giữa d và Ox là:

Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Chọn B.

Quảng cáo

Ví dụ: 2

Tính góc giữa Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng và d' là giao tuyến của hai mặt phẳng: (P): x + 2y – z + 1 = 0 và (Q): 2x + 3z – 2 = 0?

A. 30o

B. 45o

C. 60o

D. 90o

Lời giải:

Hai mặt phẳng (P)và (Q) có vecto pháp tuyến là: Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

d' là giao tuyến của (P) và (Q) nên vectơ chỉ phương của d’ là

Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Đường thẳng d có vecto chỉ phương Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Cosin góc giữa d và d’ là:

Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

=> góc giữa d và d’ bằng 90o.

Chọn D.

Ví dụ: 3

Tính sin góc giữa đường thẳng d và mặt phẳng (P) biết Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng và (P): 2x – y + 2z – 1 = 0?

A. Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

B. Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

C. Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

D. Đáp án khác

Quảng cáo

Lời giải:

Đường thẳng d có vecto chỉ phương Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Mặt phẳng (P) có vecto pháp tuyến Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng nên sin góc giữa d và (P) là:

Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Chọn A.

Ví dụ: 4

Cho bốn điểm A( 1; 0;1) ; B( -1; 2; 1); C( -1; 2; 1) và D( 0; 4; 2). Xác định cosin góc giữa hai đường thẳng AB và CD?

A. Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

B. Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

C. Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

D. Đáp án khác

Lời giải:

+ Đường thẳng AB có vecto chỉ phương Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

+ Đường thẳng CD có vecto chỉ phương Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng .

=> Cosin góc giữa hai đường thẳng AB và CD là:

Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Chọn C.

Ví dụ: 5

Cho đường thẳng Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng . Xác định m để cosin góc giữa hai đường thẳng đã cho là: Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

A. m= 2

B. m = - 4

C. m= (- 1)/2

D. m= 1

Lời giải:

Đường thẳng d1 có vecto chỉ phương Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Đường thẳng d2 có vecto chỉ phương Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Để cosin góc giữa hai đường thẳng đã cho là:

Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Chọn C.

Ví dụ: 6

Cho đường thẳng Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng và mặt phẳng (P): x+ my- z+ 100= 0. Xác định m để cosin góc giữa đường thẳng d và mặt phẳng (P) là Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng ?

A. m= ± 1

B.m= ± 2

C. m= 0

D. m= ± 3

Lời giải:

Đường thẳng d có vecto chỉ phương Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Mặt phẳng (P) có vecto pháp tuyến Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

=> Sin góc tạo bởi đường thẳng d và mặt phẳng (P) là:

Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Theo giả thiết ta có:

Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Chọn A.

Quảng cáo

Ví dụ: 7

Cho đường thẳng Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng và mặt phẳng (P): 4x- 4y+ 2z- 9= 0. Xác định m để Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

A. m= 1

B.m= - 1

C. m= - 2

D. m= -1 hoặc m= -7

Lời giải:

+ Đường thẳng d có vecto chỉ phương Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Mặt phẳng (P) có vecto pháp tuyến Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

=> Sin góc tạo bởi đường thẳng d và mặt phẳng (P) là:

Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Theo giả thiết ta có: Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Chọn D.

Ví dụ: 8

Cho đường thẳng Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng ; điểm A( 2; 0; 0); B (0; 1; 0) và C( 0;0;- 3).Xác định sin góc giữa đường thẳng d và mặt phẳng (ABC) ?

A. Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

B. Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

C. Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

D. Đáp án khác

Lời giải:

+ Phương trình mặt phẳng (ABC): Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Hay ( ABC): 3x + 6y – 2z – 6= 0

Mặt phẳng (ABC) có vecto pháp tuyến Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng .

+ Đường thẳng d có vecto chỉ phương Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng .

=> Sin góc giữa đường thẳng d và mặt phẳng (P) là:

Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Chọn A.

Ví dụ: 9

Trong không gian với hệ tọa độ Oxyz; gọi đường thẳng d đi qua A( -1; 0; -1), cắt Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng , sao cho cosin góc giữa d và Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng là nhỏ nhất. Phương trình đường thẳng d là

A. Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

B. Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

C. Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

D. Đáp án khác

Lời giải:

Gọi giao điểm của đường thẳng d và Δ1 là M( 1+ 2t; 2+ t; -2- t)

Đường thẳng d có vectơ chỉ phương Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Đường thẳng Δ2 có vectơ chỉ phương Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

=> cosin góc giữa hai đường thẳng d và Δ2 là:

Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

=> cosin góc giữa hai đường thẳng d và Δ2 là 0 khi t= 0.

Khi đó; M( 1; 2; - 2) và Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Vậy phương trình đường thẳng d là: Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Chọn B.

C. Bài tập vận dụng

Câu 1:

Tính sin của góc tạo bởi đường thẳng Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng và (P):x+y-z+2=0?

A. Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

B.Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

C. Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

D. Đáp án khác

Lời giải:

Đường thẳng d có vecto chỉ phương Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Mặt phẳng (P) có vecto pháp tuyến Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng nên sin góc giữa d và (P) là:

Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Chọn C.

Câu 2:

Trong không gian với hệ trục toạ độ Oxyz; gọi (P) là mặt phẳng chứa đường thẳng Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng và tạo với trục Oy góc có số đo lớn nhất. Điểm nào sau đây thuộc mặt phẳng (P)?

A. ( -3; 0; 4)

B. ( 3; 0; 2)

C. ( -1; -2; -1)

D. ( 1;2;1)

Lời giải:

Gọi Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng là VTPT của (P).

Đường thẳng (d) có vecto chỉ phương Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng .

Gọi α là góc tạo bởi (P) và Oy, α lớn nhất khi sinα lớn nhất.

=> n vuông góc với u nên n.u=0

⇔ a- b- 2c= 0 ⇔ a= b+ 2c

=> vecto pháp tuyến Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Ta có; Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Nếu b= 0 thì sinα= 0

Nếu b ≠ 0 thì Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng . Khi đó, sinα lớn nhất khi: Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Chọn b= 5; c= -2 => a= b+ 2c= 1

Vậy phương trình mặt phẳng (P) là x + 5y- 2z + 9= 0. Do đó ta có ( -1; -2; -1) thuộc (P).

Chọn C.

Câu 3:

Trong không gian với hệ tọa độ Oxyz; cho hai đường thẳng Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng . Tính cosin góc giữa hai đường thẳng này?

A. Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

B. Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

C. Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

D. Đáp án khác

Lời giải:

+ Đường thẳng d1 có vecto chỉ phương Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng .

Đường thẳng d2 có vecto chỉ phương Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

+ Cosin góc giữa hai đường thẳng d1 và d2 là:

Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Chọn B.

Câu 4:

Trong không gian với hệ tọa độ Oxyz; cho A(-1; 2; 0); B( 2; 1; 3) và mặt phẳng (P): 2x- y+ z- 2= 0. Sin góc của đường thẳng AB và mặt phẳng (P) là Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng . Tính a?

A . 5

B.10

C. 8

D. 7

Lời giải:

+ Đường thẳng AB có vecto chỉ phương là: Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

+ Mặt phẳng (P) có vecto pháp tuyến là: Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

=> Sin góc tạo bởi đường thẳng AB và mặt phẳng (P) là:

Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

=>a= 10.

Chọn B

Câu 5:

Trong không gian với hệ tọa độ Oxyz; cho đường thẳng Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng mặt phẳng (P): 2x- y- z+ 5= 0 và M( 1; -1; 0). Đường thẳng Δ đi qua điểm M, cắt d và tạo với mặt phẳng (P) một góc thỏa mãn sin (Δ; (P))= 0,5

A. Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

B.Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

C. Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

D. Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Lời giải:

Gọi giao điểm của d và Δ là N( 2+ 2t; t; - 2+ t)

Đường thẳng Δ có vectơ chỉ phương Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Mặt phẳng (P) có vectơ pháp tuyến Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

=> sin góc tạo bởi đường thằng Δ và mặt phẳng (P) thỏa mãn:

Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

+ Với t= 0 thì N( 2;0; -2 ) và Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

=> Phương trình đường thẳng MN≡Δ: Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

+ Với Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

=> Đường thẳng MN nhận vecto ( 23; 14; - 1) làm vecto chỉ phương

=> Phương trình MN: Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Chọn D.

Câu 6:

Trong không gian với hệ tọa độ Oxyz; gọi d đi qua A( 3; -1; 1) nằm trong mặt phẳng (P): x- y+ z- 5= 0 đồng thời tạo với Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng một góc 45o. Phương trình đường thẳng d là

A. Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

B.Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

C.Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

D. Đáp án khác

Lời giải:

+ Đường thăng d có vectơ chỉ phương Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Gọi một vectơ chỉ phương của đường thẳng d là: Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Mặt phẳng (P) có vectơ pháp tuyến Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

+ Do đường thẳng d nằm trong mặt phẳng (P) nên: ud.n=0

⇔ a- b+ c= 0 ⇔ b= a+ c

+ Do góc giữa đường thẳng ( d) và ( Δ) là 450 nên ta có: cos( d;Δ) =cos45o

Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Với c= 0, chọn a= b= 1, phương trình đường thẳng d là: Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Với 15a+ 7c= 0, chọn a= 7=> c= -15 và b= -8, phương trình đường thẳng d là

Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Chọn A

Câu 7:

Trong không gian với hệ tọa độ Oxyz; gọi d đi qua điểm A( 1; -1; 2) , song song với (P): 2x- y- z+ 3= 0 , đồng thời tạo với đường thẳng Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng một góc α sao cho cosα đạt giá trị nhỏ nhât. Phương trình đường thẳng d là.

A. Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

B. Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

C.Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

D. Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Lời giải:

+ Đường thẳng Δ có vectơ chỉ phương Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Đường thẳng d có vectơ chỉ phương Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Mặt phẳng (P) có vectơ pháp tuyến Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

+ Vì d// (P) nên hai vecto udn vuông góc với nhau.

=> ud.n= 0 ⇔ 2a- b- c= 0 ⇔ c= 2a- b

+ Cosin góc tạo bởi đường thẳng d và Δ là:

Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

=> cosin góc tạo bởi hai đường thẳng d và Δ đạt giá trị nhỉ nhất là 0 khi 5a- 4b= 0

Chọn a= 4 => b= 5 và c= 3

+ Đường thẳng d đi qua điểm A (1; -1; 2) và nhận vecto Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng làm vecto chỉ phương

=> Phương trình d: Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Chọn C.

Câu 8:

Trong không gian Oxyz, cho điểm A( -2; 0; 0), đường thẳng d qua điểm A cắt và tạo với trục Oy góc 45o. Đường thẳng d có vecto chỉ phương là:

A. ( 2;2; 1) hoặc ( 2;- 2; 1)

B . ( 2; -1;0) hoặc ( 2; 1;0)

C. ( 1;2; 0) hoặc ( - 2; 1;0)

D. ( 2; 2; 0) hoặc ( 2; -2; 0)

Lời giải:

Gọi giao điểm của đường thẳng d và trục Oy là M( 0; m;0)

Trục Oy có vectơ chỉ phương là Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Đường thẳng d có vecto chỉ phương Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng .

Góc giữa đường thẳng d và trục Oy là 45o nên ta có:

Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

+ Với m= 2 đường thẳng d có vecto chỉ phương Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

+Với m = -2 đường thẳng d có vecto chỉ phương Góc giữa hai đường thẳng; Góc giữa đường thẳng và mặt phẳng

Chọn D.

D. Bài tập tự luyện

Bài 1. Tính cosin góc giữa đường thẳng d với mặt phẳng (P): 2x – y + 2z – 1 = 0 biết d có phương trình: x=1+ty=1+3tz=2t.

Bài 2. Tính góc giữa d và (α) biết d có phương trình: x22=y+13=z15 và (α): 2x + y + z – 8 = 0.

Bài 3. Cho mặt phẳng (P): 3x + 4y + 5z + 2 = 0 và đường thẳng d là giao tuyến của 2 mặt phẳng (α): x – 2y + 1 = 0, (β): x – 2z – 3 = 0. Gọi φ là góc giữa đường thẳng d và mặt phẳng (P). Tính góc φ?

Bài 4. Cho mặt phẳng (α): x – 2y + 1 = 0, (β): x – 2z – 3 = 0. Đường thẳng d là giao tuyến của (α) và (β). Tính cosin góc giữa d và mặt phẳng (P): 3x + 4y + 5z + 8 = 0.

Bài 5. Cho đường thẳng d: x1=y2=z1 và mặt phẳng (P): 5x + 11y + 2z – 4 = 0. Tính góc giữa đường thẳng d và (P)?

Bài giảng: Cách viết phương trình đường thẳng nâng cao - Cô Nguyễn Phương Anh (Giáo viên VietJack)

Xem thêm các chuyên đề Toán lớp 12 có trong đề thi THPT Quốc gia khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

phuong-trinh-duong-thang-trong-khong-gian.jsp

Giải bài tập lớp 12 sách mới các môn học
Tài liệu giáo viên