Viết phương trình mặt cầu có tâm và bán kính cho trước lớp 12 (cách giải + bài tập)
Chuyên đề phương pháp giải bài tập Viết phương trình mặt cầu có tâm và bán kính cho trước lớp 12 chương trình sách mới hay, chi tiết với bài tập tự luyện đa dạng giúp học sinh ôn tập, biết cách làm bài tập Viết phương trình mặt cầu có tâm và bán kính cho trước.
Viết phương trình mặt cầu có tâm và bán kính cho trước lớp 12 (cách giải + bài tập)
1. Phương pháp giải
Mặt cầu có tâm I(a; b; c) và bán kính R có phương trình là:
(x – a)2 + (y – b)2 + (z – c)2 = R2.
2. Ví dụ minh họa
Ví dụ 1. Trong không gian Oxyz, viết phương trình mặt cầu có tâm I(−1; 2; −3), bán kính R = 3.
Hướng dẫn giải:
Phương trình mặt cầu có tâm I(−1; 2; −3), bán kính R = 3 có phương trình là:
(x + 1)2 + (y – 2)2 + (z + 3)2 = 9.
Ví dụ 2. Trong không gian Oxyz, viết phương trình mặt cầu có tâm I(0; −4; 1), đường kính bằng 4.
Hướng dẫn giải:
Đường kính của mặt cầu bằng 4 nên bán kính R = 2.
Phương trình của mặt cầu tâm I(0; −4; 1) là x2 + (y + 4)2 + (z – 1)2 = 4.
3. Bài tập tự luyện
Bài 1. Trong các phương trình sau, phương trình nào là phương trình mặt cầu tâm I(1; −2; 3), bán kính R = 3.
A. (x – 1)2 + (y + 2)2 + (z – 3)2 = 3;
B. (x – 1)2 + (y + 2)2 + (z – 3)2 = 9;
C. (x + 1)2 + (y − 2)2 + (z + 3)2 = 3;
D. (x + 1)2 + (y − 2)2 + (z + 3)2 = 9.
Hướng dẫn giải:
Đáp án đúng là: B
Phương trình mặt cầu tâm I(1; −2; 3), bán kính R = 3 là:
(x – 1)2 + (y + 2)2 + (z – 3)2 = 9.
Bài 2. Trong hệ trục tọa độ Oxyz, phương trình mặt cầu I(2; 1; −2) bán kính R = 2 là
A. (x – 2)2 + (y − 1)2 + (z – 2)2 = 22;
B. x2 + y2 + z2 – 4x – 2y + 4z + 5 = 0;
C. x2 + y2 + z2 + 4x – 2y + 4z + 5 = 0;
D. (x − 2)2 + (y − 1)2 + (z + 2)2 = 2.
Hướng dẫn giải:
Đáp án đúng là: B
Phương trình mặt cầu I(2; 1; −2) bán kính R = 2 là
(x – 2)2 + (y – 1)2 + (z + 2)2 = 22 x2 + y2 + z2 – 4x – 2y + 4z + 5 = 0.
Bài 3. Trong không gian Oxyz, mặt cầu có tâm I(−1; 2; 0) đường kính bằng 10 có phương trình là
A. (x – 1)2 + (y + 2)2 + z2 = 100;
B. (x + 1)2 + (y − 2)2 + z2 = 100;
C. (x + 1)2 + (y − 2)2 + z2 = 25;
D. (x − 1)2 + (y + 2)2 + z2 = 25.
Hướng dẫn giải:
Đáp án đúng là: C
Đường kính bằng 10 nên bán kính R = 5.
Phương trình mặt cầu tâm I(−1; 2; 0), bán kính R = 5 là (x + 1)2 + (y − 2)2 + z2 = 25.
Bài 4. Trong không gian Oxyz, mặt cầu có tâm I(2; 3; −6) và bán kính bằng 4 có phương trình là
A. (x – 2)2 + (y − 3)2 + (z + 6)2 = 16;
B. (x + 2)2 + (y + 3)2 + (z – 6)2 = 16;
C. (x + 2)2 + (y + 3)2 + (z – 6)2 = 4;
D. (x − 2)2 + (y − 3)2 + (z + 6)2 = 4.
Hướng dẫn giải:
Đáp án đúng là: A
Mặt cầu có tâm I(2; 3; −6) và bán kính bằng 4 có phương trình là
(x – 2)2 + (y − 3)2 + (z + 6)2 = 16.
Bài 5. Trong không gian Oxyz, phương trình nào dưới đây là phương trình mặt cầu tâm I(1; 0; −2), bán kính R = 4.
A. (x + 1)2 + y2 + (z − 2)2 = 4;
B. (x − 1)2 + y2 + (z + 2)2 = 4;
C. (x − 1)2 + y2 + (z + 2)2 = 16;
D. (x + 1)2 + y2 + (z − 2)2 = 16.
Hướng dẫn giải:
Đáp án đúng là: C
Phương trình mặt cầu tâm I(1; 0; −2), bán kính R = 4 là
(x − 1)2 + y2 + (z + 2)2 = 16.
Bài 6. Trong không gian Oxyz, phương trình nào dưới đây là phương trình mặt cầu tâm I(1; 2; 3), bán kính R = 1.
A. (x − 1)2 + (y – 2)2 + (z − 3)2 = 1;
B. (x + 1)2 + (y + 2)2 + (z + 3)2 = 1;
C. (x − 1)2 + (y – 2)2 + (z − 3)2 = 1;
D. (x − 1)2 – (y – 2)2 + (z − 3)2 = 1.
Hướng dẫn giải:
Đáp án đúng là: A
Phương trình mặt cầu tâm I(1; 2; 3), bán kính R = 1 là
(x − 1)2 + (y – 2)2 + (z − 3)2 = 1.
Bài 7. Trong không gian Oxyz, phương trình mặt cầu tâm I(1; −2; 3), bán kính R = 2 là
A. x2 + 3y2 + 3z2 = 4;
B. (x + 1)2 + (y − 2)2 + (z + 3)2 = 4;
C. (x − 1)2 + (y + 2)2 + (z − 3)2 = 4;
D. (x − 1)2 – (y + 2)2 + (z − 3)2 = 4.
Hướng dẫn giải:
Đáp án đúng là: C
Phương trình mặt cầu tâm I(1; −2; 3), bán kính R = 2 là
(x − 1)2 + (y + 2)2 + (z − 3)2 = 4.
Bài 8. Phương trình mặt cầu tâm I(1; 2; 3) và bán kính R = 3 là
A. (x − 1)2 + (y − 2)2 + (z – 3)2 = 9;
B. (x − 1)2 + (y − 2)2 + (z − 3)2 = 3;
C. (x + 1)2 + (y + 2)2 + (z + 3)2 = 9;
D. x2 + y2 + z2 + 2x + 4y + 6z + 5 = 0.
Hướng dẫn giải:
Đáp án đúng là: A
Phương trình mặt cầu tâm I(1; 2; 3) và bán kính R = 3 là
(x − 1)2 + (y − 2)2 + (z – 3)2 = 9 x2 + y2 + z2 – 2x – 4y – 6z + 5 = 0.
Bài 9. Phương trình mặt cầu tâm I(0; 0; −3) và bán kính R = 5 là
A. x2 + y2 + (z + 3)2 = 25;
B. x2 + y2 + (z + 3)2 = 5;
C. x2 + y2 + (z − 3)2 = 25;
D. x2 + y2 + (z − 3)2 = 5.
Hướng dẫn giải:
Đáp án đúng là: A
Phương trình mặt cầu tâm I(0; 0; −3) và bán kính R = 5 là x2 + y2 + (z + 3)2 = 25.
Bài 10. Trong không gian Oxyz, phương trình nào dưới đây là phương trình mặt cầu tâm I(−1; 0; 3), bán kính R = .
A. (x + 1)2 + y2 + (z − 3)2 = ;
B. (x − 1)2 + y2 + (z − 3)2 = 5;
C. (x − 1)2 + y2 + (z + 3)2 = 5;
D. (x + 1)2 + y2 + (z − 3)2 = 5.
Hướng dẫn giải:
Đáp án đúng là: D
Phương trình mặt cầu tâm I(−1; 0; 3), bán kính R = là (x + 1)2 + y2 + (z − 3)2 = 5.
Xem thêm các dạng bài tập Toán 12 hay, chi tiết khác:
- Xác định các yếu tố cơ bản của mặt cầu trong không gian
- Viết phương trình mặt cầu có tâm và đi qua 1 điểm
- Viết phương trình mặt cầu có đường kính cho trước
- Viết phương trình mặt cầu đi qua 4 điểm không đồng phẳng
- Viết phương trình mặt cầu có tâm và tiếp xúc với một mặt phẳng
- Vận dụng phương trình mặt cầu vào giải quyết bài toán liên quan đến thực tiễn
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Lớp 12 Kết nối tri thức
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT
- Lớp 12 Chân trời sáng tạo
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST
- Lớp 12 Cánh diều
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều