Hàm số và đồ thị (Lý thuyết Toán lớp 10) - Cánh diều
Với tóm tắt lý thuyết Toán 10 Bài 1: Hàm số và đồ thị sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 10.
Hàm số và đồ thị (Lý thuyết Toán lớp 10) - Cánh diều
Lý thuyết Hàm số và đồ thị
1. Hàm số
1.1. Định nghĩa
Cho tập hợp khác rỗng D. Nếu với mỗi giá trị của x thuộc D có một và chỉ một giá trị tương ứng của y thuộc tập hợp số thực thì ta có một hàm số.
Ta gọi x là biến số và y là hàm số của x.
Tập D được gọi là tập xác định của hàm số.
Kí hiệu hàm số: y = f(x), xD.
Ví dụ:
a) Với hình tròn có bán kính r và đường kính d, ta có . Như vậy d là hàm số của r vì mỗi giá trị của r chỉ cho đúng một giá trị của d.
b) Biểu thức , như vậy ta thấy y không phải là hàm số của x vì khi x = 1 ta có hai giá trị của y là 1 và -1.
1.2. Cách cho hàm số
a) Hàm số cho bằng một công thức
Hàm số được cho bằng biểu thức, cùng cách nói với hàm số cho bằng công thức.
Tập xác định của hàm số y = f(x) là tập hợp tất cả các số thực x sao cho biểu thức f(x) có nghĩa.
Ví dụ:
a) Tìm tập xác định của hàm số
Biểu thức có nghĩa khi x - 2 ≠ 0 ⇔ x ≠ 2, vì vậy tập xác định của hàm số đã cho là: D = { | } = \{2}
b) Tìm tập xác định của hàm số
Biểu thức có nghĩa khi x - 2 ≥ 0 ⇔ x ≥ 2, vì vậy tập xác định của hàm số đã cho là: D = { | } = [2; +)
b) Hàm số cho bằng nhiều công thức
Một hàm số có thể được cho bằng nhiều công thức.
Ví dụ:
Cho hàm số: f(x) =
a) Tìm tập xác định của hàm số trên?
b) Tính giá trị của hàm số khi x = -5; x = 0; x = 2022.
Hướng dẫn giải:
a) Hàm số f(x) có nghĩa khi x < 0; x > 0; x = 0 nên tập xác định của hàm số là: D=
b) Với x = -5 < 0 thì f(-5) = -1;
Với x = 0 thì f(0) = 0;
Với x = 2022 > 1 thì f(2022) = 1.
Vậy giá trị của hàm số tại x = -5; x = 0; x = 2022 lần lượt là f(-5) = -1; f(0) = 0; f(2022) = 1.
Chú ý: Giả sử hàm số y = f(x) có tập xác định là D. Khi biến số x thay đổi trong tập D thì tập hợp các giá trị y tương ứng được gọi là tập giá trị của hàm số.
c) Hàm số không cho bằng công thức
Trong thực tiễn, có những tình huống dẫn tới những hàm số không thể cho bằng không thức (hoặc nhiều công thức).
Ví dụ: Biểu đồ lượng mưa tại Hà Nội trong năm 2021 (Đơn vị: mm)
a) Xác định tập hợp các tháng được nêu trong biểu đồ.
b) Tương ứng tháng với lượng mưa trung bình của tháng đó có phải là hàm số không? Giải thích.
Giải:
a) Tập hợp các tháng là: D = {1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12}
b) Mỗi tháng tương ứng xác định với đúng một giá trị của lượng mưa nên tương ứng đó xác định một hàm số. Hàm số đó có thể được cho bằng bảng như sau:
Tháng |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
Lượng mưa (mm) |
6 |
29 |
45 |
161 |
335 |
229 |
366 |
247 |
107 |
8 |
24 |
28 |
2. Đồ thị của hàm số
Đồ thị của hàm số y = f(x) xác định trên tập hợp D là tập hợp tất cả các điểm
M(x; f(x)) trong mặt phẳng toạ độ Oxy với mọi x thuộc D.
Ví dụ: Cho hàm số y = x + 3
a) Vẽ đồ thị hàm số trên.
b) Trong mặt phẳng toạ độ Oxy cho ba điểm: A(0; 3); B(1;2); C(1; 1). Xác định điểm thuộc và không thuộc đồ thị trên.
Giải:
a) Khi x = 0 thay vào hàm số y = x + 3 ta được y = 3 như vậy đồ thị cắt trục Oy tại điểm (0;3).
Khi y = 0 thay vào hàm số y = x + 3 ta được x = -3 như vậy đồ thị cắt trục Ox tại điểm (-3; 0). Ta vẽ được đồ thị đi qua hai điểm trên.
Đồ thị hàm số y = x + 3
b) Khi x = 0 thì y = 3; khi x = 1 thì y = 4. Vậy điểm điểm A(0; 3) thuộc đồ thị hàm số, điểm B(1; 2); C(1;1) không thuộc đồ thị.
Chú ý:
- Điểm M(a;b) trong mặt phẳng toạ độ Oxy thuộc đồ thị hàm số y = f(x), xD khi và chỉ khi
- Để chứng tỏ điểm M(a; b) trong mặt phẳng toạ độ không thuộc đồ thị hàm số
y = f(x), xD, ta có thể kiểm tra một trong hai khả năng sau:
Khả năng 1: Chứng tỏ rằng a D
Khả năng 2: Khi a D thì chứng tỏ rằng b ≠ f(a).
3. Sự biến của hàm số
Cho hàm số y = f(x) xác định trên khoảng (a; b):
- Hàm số y = f(x) gọi là đồng biến trên khoảng (a; b) nếu
- Hàm số y = f(x) gọi là nghịch biến trên khoảng (a; b) nếu
Ví dụ: Cho hàm số y = f(x) =
Xét sự biến thiên của hàm số trên khoảng (-∞; 0) và (0; +∞).
Hướng dẫn giải
+) Trên khoảng (-∞; 0) hàm số luôn xác định
Lấy x1, x2 ∈ (-∞; 0) thỏa mãn x1 < x2.
Vì x1 < x2 < 0 nên x12 > x22 hay f(x1) > f(x2)
Do đó hàm số nghịch biến trên (-∞; 0).
+) Trên khoảng (0; +∞) hàm số luôn xác định
Lấy x1, x2 ∈ (0; +∞) thỏa mãn x1 < x2.
Vì 0 < x1 < x2 nên x12 < x22 hay f(x1) < f(x2)
Do đó hàm số đồng biến trên (0; +∞).
Vậy hàm số đã cho nghịch biến trên (-∞; 0) và đồng biến trên (0; +∞).
Bảng biến thiên:
Đây là bảng thiên của hàm số y = x2.
- Dấu mũi tên đi xuống từ +∞ đến 0 diễn tả hàm số nghịch biến trên khoảng (-∞; 0)
- Dấu mũi tên đi lên từ 0 đến +∞ diễn ta hàm số đồng biến trên khoảng (0; +∞).
Đồ thị hàm số:
- Ta thấy hàm số nghịch biến trên khoảng (-∞; 0) khi đồ thị hàm số trên khoảng đó “đi xuống”.
- Hàm số đồng biến trên khoảng (0; +∞) khi đồ thị hàm số trên khoảng đó “đi lên”.
Bài tập Hàm số và đồ thị
Bài 1. Tìm tập xác định của mỗi hàm số sau:
a) y =
b) y =
c) y =
d) y=
Hướng dẫn giải
a) Tập xác định D =
b) Biểu thức có nghĩa khi 2 - 3x ≥ 0 ⇔ x ≤ . Vì vậy tập xác định của hàm số: D = {xR | x} = (-; ].
c) Biểu thức y = có nghĩa khi x + 1 ≠ 0 ⇔ x ≠ - 1. Vì vậy tập xác định của hàm số: D = { | } = \{-1}.
d) Ta thấy hàm số có nghĩa với mọi và nên tập xác định của hàm số là: D = .
Bài 2. Bảng dưới đây cho biết chỉ số PM2,5 ở thành phố Hà Nội từ tháng 1 đến tháng 12 của năm 2019.
a) Nêu chỉ số PM2,5 trong tháng 2; tháng 5; tháng 10
b) Chỉ số PM2,5 có phải hàm số của tháng không? Tại sao.
Hướng dẫn giải
a) Ta thấy:
Tháng 2: chỉ số PM2,5 là 36,0
Tháng 5: chỉ số PM2,5 là 45,8
Tháng 10: chỉ số PM2,5 là 43,2
b) Mỗi tháng chỉ tương ứng với đúng một chỉ số nên chỉ số PM2,5 là hàm số của tháng
Bài 3. Cho hàm số y =
a)Điểmnào trong các điểm (−1;−2); (0;0); (0;1); (2021;1)thuộc đồ thị của hàm số trên?
b) Tìm những điểm thuộc đồ thị hàm số có hoành độ lần lượt bằng −2;3và 10.
c) Tìm những điểm thuộc đồ thị hàm số có tung độ bằng −18.
Hướng dẫn giải
a)
- Thay toạ độ (-1; -2) vào hàm số y = ta được: -2 = -2. (Đúng). Như vậy, điểm (-1; -2) thuộc đồ thị.
- Thay toạ độ (0; 0) vào hàm số y = ta được: 0 = -2. (Đúng). Như vậy điểm (0; 0) thuộc đồ thị.
- Thay toạ độ (0;1) vào hàm số y = ta được: 1 = -2.= 0 (Sai). Như vậy điểm (0;1) không thuộc đồ thị.
- Thay điểm toạ độ (2021; 1) vào hàm số y = ta được: 1 = -2.(Sai). Như vậy điểm (2021; 1) không thuộc đồ thị.
b)
- Thay x = -2 vào hàm số y = , ta được: y = -2.= -8. Khi đó ta được điểm có tọa độ (-2; -8).
- Thay x = 3 vào hàm số y = , ta được: y = -2.= -18. Khi đó ta được điểm có tọa độ (3; -18).
- Thay x = 10 vào hàm số y = , ta được: y = -2.= -200. Khi đó ta được điểm có tọa độ (10; -200).
Vậy những điểm cần tìm là: (-2; -8); (3; -18) và (10; -200).
c) Thay y = -18 vào hàm số y = , ta được:
Khi đó ta được hai điểm có tọa độ (3; -18) và (-3; -18).
Vậy tọa độ những điểm cần tìm là (3; -18) và (-3; -18).
Bài 4. Cho đồ thị hàm số y = f(x) như hình.
a) Trong các điểm có toạ độ (1; -2); (0; 0); (2; -1) điểm nào thuộc đồ thị hàm số? Điểm nào không thuộc đồ thị hàm số?
b) Xác định f(0); f(3).
c) Tìm điểm thuộc đồ thị có tung độ bằng 0.
Hướng dẫn giải
a) Ta xác định các điểm A, O, B tương ứng với tọa độ (1; -2); (0; 0); (2; -1) trên hình:
Quan sát đồ thị ta thấy điểm A có hoành độ bằng 1 và tung độ bằng -2 thuộc đồ thị của hàm số; Điểm B có hoành độ bằng 2 và tung độ bằng -1 thuộc đồ thị của hàm số; Điểm (0; 0) không thuộc đồ thị hàm số.
b)
- Giá trị của f(0) chính là giao điểm của đường thẳng x = 0 với đồ thị hàm số y = f(x). Quan sát đồ thị ta thấy giao điểm có hoành độ bằng -1 nên f(0) = -1
- Giá trị của f(3) chính là giao điểm của đường thẳng x = 3 với đồ thị hàm số y = f(x). Quan sát đồ thị ta thấy đường thẳng x = 3 song song với Oy nên f(3) = 0
Vậy f(0) = -1 và f(3) = 0.
c) Điểm thuộc đồ thị có tung độ bằng 0 chính là giao điểm của đường thẳng y = 0 và đồ thị. Quan sát đồ thị ta thấy có hai giao điểm với hoành độ là x = - 1 và x = 3.
Do đó ta có hai giao điểm của đồ thị và trục Ox là (-1; 0) và (3; 0).
Học tốt Hàm số và đồ thị
Các bài học để học tốt Hàm số và đồ thị Toán lớp 10 hay khác:
Xem thêm tóm tắt lý thuyết Toán lớp 10 Cánh diều hay, chi tiết khác:
Lý thuyết Toán 10 Bài 2: Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng
Lý thuyết Toán 10 Bài 5: Hai dạng phương trình quy về phương trình bậc hai
Xem thêm các tài liệu học tốt lớp 10 hay khác:
- Giải sgk Toán 10 Cánh diều
- Giải Chuyên đề học tập Toán 10 Cánh diều
- Giải SBT Toán 10 Cánh diều
- Giải lớp 10 Cánh diều (các môn học)
- Giải lớp 10 Kết nối tri thức (các môn học)
- Giải lớp 10 Chân trời sáng tạo (các môn học)
Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 10 (hay nhất) - Cánh diều
- Soạn văn 10 (ngắn nhất) - Cánh diều
- Soạn văn 10 (siêu ngắn) - Cánh diều
- Giải sgk Toán 10 - Cánh diều
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Giải sgk Vật lí 10 - Cánh diều
- Giải sgk Hóa học 10 - Cánh diều
- Giải sgk Sinh học 10 - Cánh diều
- Giải sgk Địa lí 10 - Cánh diều
- Giải sgk Lịch sử 10 - Cánh diều
- Giải sgk Kinh tế và Pháp luật 10 - Cánh diều
- Giải sgk Tin học 10 - Cánh diều
- Giải sgk Công nghệ 10 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 10 - Cánh diều
- Giải sgk Giáo dục quốc phòng 10 - Cánh diều