Bội chung. Bội chung nhỏ nhất (Lý thuyết Toán lớp 6) | Kết nối tri thức
Với tóm tắt lý thuyết Toán lớp 6 Bài 12: Bội chung. Bội chung nhỏ nhất hay nhất, chi tiết sách Kết nối tri thức sẽ giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 6.
Bội chung. Bội chung nhỏ nhất (Lý thuyết Toán lớp 6) | Kết nối tri thức
Lý thuyết Bội chung. Bội chung nhỏ nhất
1. Bội chung và bội chung nhỏ nhất
Bội chung của hai hay nhiều số là bội của tất cả các số đã cho.
Bội chung nhỏ nhất của hai hay nhiều số là số nhỏ nhất khác 0 trong tập hợp các bội chung của các số đó.
Kí hiệu:
BC(a, b) là tập hợp các bội chung của a và b.
BCNN(a, b) là bội chung nhỏ nhất của a và b.
Ví dụ 1. Tìm bội chung và bội chung nhỏ nhất của 30 và 45
Lời giải
Ta có B(30) = {0; 30; 60; 90; 120; 150; 180; 210; 240; 270; …}
B(45) = {0; 45; 90; 135; 180; 225; 270; …}
BC(30, 45) = {0; 90; 180; 270; …}.
BCNN(30, 45) = 90.
Nhận xét: Trong các số đã cho, nếu số lớn nhất là bội của các số còn lại thì BCNN của các số đã cho chính là số lớn nhất đó.
Nếu a b thì BCNN(a, b) = a.
Mọi số tự nhiên đều là bội của 1. Do đó với mọi số tự nhiên a và b (khác 0), ta có:
BCNN(a, 1) = a; BCNN(a, b, 1) = BCNN(a, b).
Ví dụ 2. Tìm bội chung nhỏ nhất của các số sau:
a) 12 và 36;
b) 124 và 1.
Lời giải
a) Vì 36 12 nên BCNN(12, 36) = 36;
b) Vì 124 là bội của 1 nên BCNN(1; 124) = 124.
2. Cách tìm bội chung nhỏ nhất
Các bước tìm BCNN của hai hay nhiều số lớn hơn 1:
Bước 1. Phân tích mỗi số ra thừa số nguyên tố;
Bước 2. Chọn ra các thừa số nguyên tố chung và riêng;
Bước 3. Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất. Tích đó là BCNN cần tìm.
Ví dụ 3. Tìm bội chung nhỏ nhất của 21 và 14.
Lời giải
Ta có 21 = 3.7; 14 = 2.7.
Khi đó BCNN(21, 14) = 2.3.7 = 42.
Tìm bội chung từ bội chung nhỏ nhất
Để tìm bội chung của các số đã cho ta có thể làm như sau:
Bước 1. Tìm BCNN của các số đã cho.
Bước 2. Tìm các bội của BCNN đó.
Ví dụ 4. Tìm BC(12, 24, 30)
Lời giải
Ta có: 12 = 22.3; 24 = 23.3; 30 = 2.3.5.
BCNN(12, 24, 30) = 23.3.5 = 120.
BC(12, 24, 30) = B(120) = {0; 120; 240; 360; 480; …}.
3. Quy đồng mẫu các phân số
Vận dụng BCNN để tìm mẫu chung của hai phân số:
Để quy đồng mẫu số hai phân số và , ta phải tìm mẫu chung của hai phân số đó. Thông thường ta nên chọn mẫu chung là BCNN của hai mẫu.
Ví dụ 5. Quy đồng mẫu số các phân số sau:
Lời giải
a) Ta có 12 = 22.3; 15 = 3.5.
BCNN(12, 15) = 22.3.5 = 60.
Ta có: 60:12 = 5; 60:15 = 4. Khi đó:
b) Ta có: 7 = 7, 21 = 3. 7, 14 = 2.7.
BCNN(7, 21, 14) = 2.3.7 = 42.
Ta có: 42:7 = 6, 42:21 = 2, 42:14 = 3. Khi đó:
Bài tập Bội chung. Bội chung nhỏ nhất
Bài 1. Tìm BCNN của các số sau:
a) 27 và 36;
b) 49 và 14.
Lời giải
a) Ta có: 27 = 33, 36 = 22.32.
Khi đó BCNN(27, 36) = 33.22 = 27.4 = 108.
Vậy BCNN(27, 36) = 108.
b) Ta có 49 = 72, 14 = 2.7.
Khi đó BCNN(49, 14) = 72.2 = 49.2 = 98.
Vậy BCNN(49, 14) = 98.
Bài 2. Học sinh lớp 6A và 6B khi xếp thành 3 hàng, 5 hàng hay 6 hàng đều vừa đủ. Biết số học sinh của hai lớp từ 70 đến 100 học sinh. Tính số học sinh của lớp 6A và 6B.
Lời giải
Vì số học sinh của lớp 6A và 6B xếp thành 3 hàng, 5 thàng hay 6 hàng đều vừa đủ nghĩa là số học sinh của hai lớp 6A và 6B chia hết cho 3 , 5 và 6 hay số học sinh của lớp 6A và 6B là bội chung của 3, 5 và 6.
Ta có: 3 = 3, 6 = 2.3, 5 = 5.
BCNN(3, 5, 6) = 2.3.5 = 30.
BC(3, 5, 6) = B(30) = {0; 30; 60; 90; 120; …}.
Suy ra x ∈ {0; 30; 60; 90; 120; …}.
Biết số học sinh của hai lớp từ 70 đến 100 học sinh nên số học sinh hai lớp là 90.
Vậy số học sinh của hai lớp 6A và 6B là 90 học sinh.
Bài 3. Thực hiện phép tính:
Lời giải
a)
b)
Học tốt Bội chung. Bội chung nhỏ nhất
Các bài học để học tốt Bội chung. Bội chung nhỏ nhất Toán lớp 6 hay khác:
Xem thêm tóm tắt lý thuyết Toán lớp 6 Kết nối tri thức với cuộc sống hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 6 hay khác:
- Giải sgk Toán 6 Kết nối tri thức
- Giải SBT Toán 6 Kết nối tri thức
- Giải lớp 6 Kết nối tri thức (các môn học)
- Giải lớp 6 Chân trời sáng tạo (các môn học)
- Giải lớp 6 Cánh diều (các môn học)
Tủ sách VIETJACK shopee lớp 6-8 cho phụ huynh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài dựa trên đề bài và hình ảnh của sách giáo khoa Toán lớp 6 - bộ sách Kết nối tri thức với cuộc sống (NXB Giáo dục). Bản quyền lời giải bài tập Toán lớp 6 Tập 1 & Tập 2 thuộc VietJack, nghiêm cấm mọi hành vi sao chép mà chưa được xin phép.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn Văn 6 (hay nhất) - KNTT
- Soạn Văn 6 (ngắn nhất) - KNTT
- Giải sgk Toán 6 - KNTT
- Giải sgk Tiếng Anh 6 Global Success
- Giải sgk Tiếng Anh 6 Friends plus
- Giải sgk Tiếng Anh 6 Smart World
- Giải sgk Tiếng Anh 6 Explore English
- Giải sgk Khoa học tự nhiên 6 - KNTT
- Giải sgk Lịch Sử 6 - KNTT
- Giải sgk Địa Lí 6 - KNTT
- Giải sgk Giáo dục công dân 6 - KNTT
- Giải sgk Hoạt động trải nghiệm 6 - KNTT
- Giải sgk Tin học 6 - KNTT
- Giải sgk Công nghệ 6 - KNTT
- Giải sgk Âm nhạc 6 - KNTT