Phương trình thuần nhất bậc 2 đối với sinx và cosx

Bài viết Phương trình thuần nhất bậc 2 đối với sinx và cosx với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Phương trình thuần nhất bậc 2 đối với sinx và cosx.

Phương trình thuần nhất bậc 2 đối với sinx và cosx

A. Phương pháp giải

Quảng cáo

+ Phương trình thuần nhất bậc hai đối với sinx và cosx là phương trình có dạng:

a.sin2 x+ b. sinx. cosx + c. cos2 x= 0 (1)

trong đó a; b và c là các số đã cho với a ≠ 0 hoặc b ≠ 0 hoặc c ≠ 0

+Có hai cách để giải phương trình thuần nhất bậc hai đối với sinx và cosx :

* Cách 1.

Bước 1: Kiểm tra cosx = 0 có nghiệm của phương trình.

Chú ý: cosx=0 ⇒ sin2 x= 1

Bước 2. Nếu cosx ≠ 0 chia cả hai vế của phương trình cho cos2x. Khi đó phương trình đã cho có dạng: a. tan2 x+ b. tanx+ c= 0

Đây là phương trình bậc hai ẩn tanx. Giải phương trình ta tính được tanx

⇒ x= ....

Chú ý:Phương trình thuần nhất bậc 2 đối với sinx và cosx

* Cách 2.Áp dụng công thức hạ bậc; công thức nhân đôi ta có:

a. sin2 x+ b. sinx. cosx+ c.cos2 x= 0

Phương trình thuần nhất bậc 2 đối với sinx và cosx

⇒ b.sin2x+( c-a) cos2x = - a- c

Đây là phương trình bậc nhất đối với sinx và cosx

B. Ví dụ minh họa

Ví dụ 1. Giải phương trình: Phương trình thuần nhất bậc 2 đối với sinx và cosx

A. Phương trình thuần nhất bậc 2 đối với sinx và cosx

B. Phương trình thuần nhất bậc 2 đối với sinx và cosx

C. Phương trình thuần nhất bậc 2 đối với sinx và cosx

D. Vô nghiệm

Lời giải

+ Trường hợp 1.

Thay cosx = 0 vào phương trình đã cho ta thấy không thỏa mãn.

+ Trường hợp 2. Với cosx ≠ 0

Phương trình thuần nhất bậc 2 đối với sinx và cosx

Phương trình này vô nghiệm

⇒ Phương trình đã cho vô nghiệm.

Chọn D.

Quảng cáo

Ví dụ 2: Phương trình Phương trình thuần nhất bậc 2 đối với sinx và cosx có các nghiệm là:

A.Phương trình thuần nhất bậc 2 đối với sinx và cosx

B. Phương trình thuần nhất bậc 2 đối với sinx và cosx

C.Phương trình thuần nhất bậc 2 đối với sinx và cosx

D. Phương trình thuần nhất bậc 2 đối với sinx và cosx

Lời giải

Trường hợp 1. Với cosx=0 ⇒ sin2x = 1 thay vào phương trình đã cho ta được :

6.1+0 – 0= 6 (luôn đúng )

⇒ phương trình có nghiệm x= π/2+kπ

Trường hợp 2. Nếu cos x ≠ 0 chia cả hai vế cho cos2x ta được

Phương trình thuần nhất bậc 2 đối với sinx và cosx

Chọn A

Ví dụ 3. Cho phương trình 2sin2 x – 5sinx. cosx +3cos2 x= 0. Tìm một họ nghiệm của phương trình:

A.Phương trình thuần nhất bậc 2 đối với sinx và cosx

B.Phương trình thuần nhất bậc 2 đối với sinx và cosx

C.Phương trình thuần nhất bậc 2 đối với sinx và cosx

D.Phương trình thuần nhất bậc 2 đối với sinx và cosx

Lời giải

+ Trường hợp 1. Nếu cosx=0 ⇒ sin2 x= 1 thay vào phương trình đã cho ta thấy không thỏa mãn.

+ Trường hợp 2. Nếu cosx ≠ 0. Chia cả hai vế của phương trình cho cos2 x ta được:

2tan2 x – 5tanx + 3= 0

Phương trình thuần nhất bậc 2 đối với sinx và cosx

Chọn C

Ví dụ 4. Giải phương trình 4sin2 x+4sinx. cosx+ cos2x= 0 .

A.Phương trình thuần nhất bậc 2 đối với sinx và cosx

B.x= arctan⁡(-2)+kπ

C.Phương trình thuần nhất bậc 2 đối với sinx và cosx

D.x= arctan⁡2+kπ

Lời giải

+ Trường hợp 1.Nếu cosx= 0 ⇒ sin2 x= 1 thay vào phương trình đã cho ta thấy không thỏa mãn.

+Trường hợp 2. Nếu cosx ≠ 0. Chia cả hai vế phương trình cho cos2 x ta được :

4tan2 x + 4tanx +1= 0 ⇒ (2tanx+1)2= 0

⇒ 2tanx+1 = 0 ⇒ tan x= (-1)/2

⇒ x= arctan⁡(- 1)/2+kπ

Chọn C.

Ví dụ 5. Phương trìnhPhương trình thuần nhất bậc 2 đối với sinx và cosx có các nghiệm là:

A .Phương trình thuần nhất bậc 2 đối với sinx và cosx

B. Phương trình thuần nhất bậc 2 đối với sinx và cosx

C. Phương trình thuần nhất bậc 2 đối với sinx và cosx

D. Tất cả sai

Lời giải

+ Trường hợp 1: Nếu cosx= 0 ⇒ sin2x = 1 thay vào phương trình đã cho ta thấy không thỏa mãn

+ trường hợp 2: Nếu cosx ≠ 0 ta chia cả hai vế của phương trình cho cos2 x ta được:

Phương trình thuần nhất bậc 2 đối với sinx và cosx

Chọn A.

Quảng cáo

Ví dụ 6: Giải phương trình - 3sin2x – 2sinx.cosx + 4cos2 x= - 3

A.Phương trình thuần nhất bậc 2 đối với sinx và cosx

B .Phương trình thuần nhất bậc 2 đối với sinx và cosx

C. Phương trình thuần nhất bậc 2 đối với sinx và cosx

D. Phương trình thuần nhất bậc 2 đối với sinx và cosx

Lời giải

+ Trường hợp 1. Nếu cosx= 0 ⇒ sin2 x= 1 thay vào phương trình đã cho ta thấy không thỏa mãn.

+ Trường hợp 2. Nếu cosx ≠ 0. Chia hai vế phương trình cho cos2 x ta được:

- 3tan2 x -2tanx + 4= (- 3)/(cos2 x)

⇒ - 3tan2 x – 2tanx + 4= - 3( 1+ tan2 x)

⇒ - 2tanx = -7 ⇒ tanx= 7/2

⇒ x=arctan 7/2+kπ

Chọn A.

Ví dụ 7: Phương trình 2sin2 x+ sinx.cosx – cos2 x= 0 có nghiệm là:

A. Phương trình thuần nhất bậc 2 đối với sinx và cosx

B. Phương trình thuần nhất bậc 2 đối với sinx và cosx

C. Phương trình thuần nhất bậc 2 đối với sinx và cosx

D. Phương trình thuần nhất bậc 2 đối với sinx và cosx

Lời giải

+ Trường hợp 1. Nếu cosx= 0 ⇒ sin2 x=1 thay vào phương trình ta thấy không thỏa mãn.

+ Trường hợp 2. Nếu cosx ≠ 0; chia cả hai vế của phương trình cho cos2 x ta được:

2tan2 x+ tanx – 1= 0

Phương trình thuần nhất bậc 2 đối với sinx và cosx

Chọn C.

Ví dụ 8: Một họ nghiệm của phương trình: 2sin2x - 5sinx.cosx–cos2 x= - 2 là

A. x= Phương trình thuần nhất bậc 2 đối với sinx và cosx

B. x= Phương trình thuần nhất bậc 2 đối với sinx và cosx

C. x= Phương trình thuần nhất bậc 2 đối với sinx và cosx

D. x= Phương trình thuần nhất bậc 2 đối với sinx và cosx

Lời giải

+ Trường hợp 1: Nếu cosx= 0 ⇒ sin2 x= 1 thay vào phương trình đã cho ta thấy không thỏa mãn.

+ trường hợp 2. Nếu cosx ≠ 0 chia cả hai vế cho cos2 x ta được :

2 tan2x – 5 tanx - 1= (- 2)/(cos2 x)

⇒ 2tan2 x – 5tanx – 1= - 2( 1+ tan2x)

⇒ 2tan2x – 5tanx -1= - 2 – 2tan2 x

⇒ 4tan2 x – 5tanx + 1= 0

Phương trình thuần nhất bậc 2 đối với sinx và cosx

Chọn B.

Ví dụ 9. Cho phương trình : 2sin2 x- 4sinx.cosx+4 cos2x= m. Tìm điều kiện của m để phương trình đã cho có nghiệm

A. 1 < m hoặc m < - 1

B.m > √3 hoặc m < - √5

C. 2- √5 ≤ m ≤ 2+ √5

D.Đáp án khác

Lời giải

Áp dụng công thức hạ bậc và công thức nhân đôi ta có:

2sin2 x- 4sinx.cosx+ 4cos2 x=m

⇒ (1-cos2x)-2sin2x+2cos2x+1 = m

⇒ cos2x – 2sin2x = m- 2

Đây là phương trình bậc nhất đối với sin2x và cos2x nên điều kiện để phương trình có nghiệm là: 12 + (-2)2 ≥ (m-2)2

⇒ 5 ≥ m2 - 4m+ 4 ⇒ m2 – 4m - 1 ≤ 0

⇒ 2- √5 ≤ m ≤ 2+ √5

Chọn C.

Quảng cáo

Ví dụ 10: Giải phương trình 4sin3 x+ 3cos3x- 3sinx – sin2x.cosx= 0

A. Phương trình thuần nhất bậc 2 đối với sinx và cosx

B. Phương trình thuần nhất bậc 2 đối với sinx và cosx

C. Phương trình thuần nhất bậc 2 đối với sinx và cosx

D. Đáp án khác

Lời giải

+ Trường hợp 1. Nếu cosx= 0 ⇒ sin2 x= 1 thay vào phương trình đã cho ta thấy không thỏa mãn.

+ Trường hợp 2.Nếu cosx ≠ 0. Chia cả hai vế cho cos3 x ta được:

Phương trình thuần nhất bậc 2 đối với sinx và cosx

⇒ 4.tan3 x+ 3- 3tanx.(1+ tan2 x) – tan2x = 0

⇒ 4.tan3 x + 3- 3tanx – 3tan3x – tan2 x = 0

⇒ tan3 x – tan2 x -3tanx + 3= 0

Phương trình thuần nhất bậc 2 đối với sinx và cosx

Chọn B.

Ví dụ 11: Giải phương trình 2cos3x = sin3x

A.Phương trình thuần nhất bậc 2 đối với sinx và cosx

B.Phương trình thuần nhất bậc 2 đối với sinx và cosx

C.Phương trình thuần nhất bậc 2 đối với sinx và cosx

D.Phương trình thuần nhất bậc 2 đối với sinx và cosx

Lời giải

Ta có: 2cos3x = sin3x

⇒ 2cos3 x= 3sinx- 4sin3x

Ta thấy cosx=0 không là nghiệm của phương trình đã cho.Chia cả hai vế phương trình cho cos3 x ta được:

Phương trình thuần nhất bậc 2 đối với sinx và cosx

⇒ 2= 3. tanx( 1+ tan2 x) – 4tan3 x

⇒ 2= 3tanx + 3tan3x – 4tan3x

⇒ tan3x – 3tanx + 2= 0

Phương trình thuần nhất bậc 2 đối với sinx và cosx

Chọn C.

Ví dụ 12: Giải phương trình Phương trình thuần nhất bậc 2 đối với sinx và cosx

A. Phương trình thuần nhất bậc 2 đối với sinx và cosx

B. Phương trình thuần nhất bậc 2 đối với sinx và cosx

C. Phương trình thuần nhất bậc 2 đối với sinx và cosx

D. Đáp án khác

Lời giải

Phương trình thuần nhất bậc 2 đối với sinx và cosx

Chọn A.

C. Bài tập vận dụng

Câu 1:Giải phương trình 4sin2x+ 5sinx. cosx – 9cos2 x= 0

A.Phương trình thuần nhất bậc 2 đối với sinx và cosx

B.Phương trình thuần nhất bậc 2 đối với sinx và cosx

C.Phương trình thuần nhất bậc 2 đối với sinx và cosx

D.Phương trình thuần nhất bậc 2 đối với sinx và cosx

Lời giải:

+ Trường hợp 1. Nếu cos x = 0 ⇒ sin2 x= 1

Thay vào phương trình đã cho ta thấy không thỏa mãn

+ Trường hợp 2. Nếu cosx ≠ 0.

Chia cả hai vế cho cos2 x ta được:

4tan2 x + 5tanx – 9=0

Phương trình thuần nhất bậc 2 đối với sinx và cosx

Chọn A.

Câu 2:Giải phương trình – sin2 x – 2sin2x- 4cos2 x = 0

A. x = arctan (-3)+ kπ

B. x = arctan 3+ kπ

C. x = arctan 2+ kπ

D. x = arctan (-2)+ kπ

Lời giải:

+ Trường hợp 1. Nếu cosx = 0 ⇒ sin2 x= 1

Thay vào phương trình đã cho ta thây không thỏa mãn.

+ Trường hợp 2. Nếu cosx ≠ 0.

Ta có: - sin2 x – 2sin2x – 4cos2 x = 0

⇒ -sin2 x – 4sinx. cosx – 4cos2 x= 0

Chia cả hai vế của phương trình cho cos2 x ta được :

- tan2 x – 4tanx – 4= 0

⇒ - (tanx + 2)2 = 0

⇒ tanx +2= 0 ⇒ tanx = - 2

⇒ x = arctan (-2)+ kπ

Chọn D

Câu 3:Giải phương trình Phương trình thuần nhất bậc 2 đối với sinx và cosx

A. Phương trình thuần nhất bậc 2 đối với sinx và cosx

B. Phương trình thuần nhất bậc 2 đối với sinx và cosx

C.Phương trình thuần nhất bậc 2 đối với sinx và cosx

D. Phương trình thuần nhất bậc 2 đối với sinx và cosx

Lời giải:

Áp dụng công thức hạ bậc và công thức nhân đôi ta có:

Phương trình thuần nhất bậc 2 đối với sinx và cosx

Chọn C.

Câu 4:Một họ nghiệm của phương trình: sin2 x – 3sinx. cosx = 2 là

A.Phương trình thuần nhất bậc 2 đối với sinx và cosx

B.Phương trình thuần nhất bậc 2 đối với sinx và cosx

C.Phương trình thuần nhất bậc 2 đối với sinx và cosx

D.Đáp án khác

Lời giải:

+ Trường hợp 1. Nếu cosx= 0 ⇒ sin2x= 1 thay vào phương trình đã cho thấy không thỏa mãn.

+ Trường hợp 2. Nếu cosx ≠ 0; chia cả hai vế phương trình cho cos2 x ta được :

tan2 x – 3tanx = 2/(cos2 x)

⇒ tan2 x -3tanx= 2( 1+tan2 x)

⇒ tan2 x – 3tanx = 2+ 2 tan2 x

⇒ - tan2 x – 3tanx – 2 = 0

Phương trình thuần nhất bậc 2 đối với sinx và cosx

Chọn C.

Câu 5:Giải phương trình 3sin2 x – 4sinx.cosx + 5cos2 x = 2.

A.Phương trình thuần nhất bậc 2 đối với sinx và cosx

B.Phương trình thuần nhất bậc 2 đối với sinx và cosx

C.Phương trình thuần nhất bậc 2 đối với sinx và cosx

D.Phương trình thuần nhất bậc 2 đối với sinx và cosx

Lời giải:

+ trường hợp 1.Nếu cosx=0 ⇒ sin2x= 1 thay vào phương trình đã cho ta thấy không thỏa mãn.

+ Trường hợp 2. Nếu cosx ≠ 0.

Chia cả hai vế của phương trình cho cos2 x ta được :

3tan2 x – 4tan x+ 5= 2/(cos2 x)

⇒ 3. tan2 x – 4tanx + 5= 2( 1+ tan2 x)

⇒ tan2 x - 4tanx + 3= 0

Phương trình thuần nhất bậc 2 đối với sinx và cosx

Chọn A

Câu 6:Phương trình : Phương trình thuần nhất bậc 2 đối với sinx và cosx có nghiệm là

A.Phương trình thuần nhất bậc 2 đối với sinx và cosx

B.Phương trình thuần nhất bậc 2 đối với sinx và cosx

C.Phương trình thuần nhất bậc 2 đối với sinx và cosx

D.Phương trình thuần nhất bậc 2 đối với sinx và cosx

Lời giải:

+ Trương hợp 1.

Nếu cosx = 0 ⇒ sin2 x= 1

Thay vào phương trình đã cho ta thấy không thỏa mãn.

+ Trường hợp 2.

Nếu cosx ≠ 0. Chia cả hai vế phương trình cho cos2x ta được :

Phương trình thuần nhất bậc 2 đối với sinx và cosx

Chọn B.

Câu 7:Phương trình Phương trình thuần nhất bậc 2 đối với sinx và cosx có nghiệm là

A.Phương trình thuần nhất bậc 2 đối với sinx và cosx

B.Phương trình thuần nhất bậc 2 đối với sinx và cosx

C.Phương trình thuần nhất bậc 2 đối với sinx và cosx

D.Phương trình thuần nhất bậc 2 đối với sinx và cosx

Lời giải:

+ Trường hợp 1. Nếu cos2x = 0 ⇒ sin2 2x= 1

Thay vào phương trình đã cho ta thấy không thỏa mãn.

+ Trường hợp 2.Nếu cos2x ≠ 0. Chia cả hai vế phương trình cho cos2 2x ta được :

Phương trình thuần nhất bậc 2 đối với sinx và cosx

Chọn D

Câu 8:Phương trình Phương trình thuần nhất bậc 2 đối với sinx và cosx có một họ nghiệm là

A. Phương trình thuần nhất bậc 2 đối với sinx và cosx

B. Phương trình thuần nhất bậc 2 đối với sinx và cosx

C. Phương trình thuần nhất bậc 2 đối với sinx và cosx

D. Phương trình thuần nhất bậc 2 đối với sinx và cosx

Lời giải:

+ Trường hợp 1. Nếu cosx = 0 ⇒ sin2 x= 1

Thay vào phương trình đã cho ta thấy thỏa mãn.

⇒ x= π/2+kπ là nghiệm của phương trình đã cho

+ Trường hợp 2. Nếu cosx ≠ 0

Phương trình thuần nhất bậc 2 đối với sinx và cosx

Chọn D.

Câu 9:Giải phương trình sin2x + 3tanx = cosx.( 4sinx – cosx)

A. Phương trình thuần nhất bậc 2 đối với sinx và cosx

B. Phương trình thuần nhất bậc 2 đối với sinx và cosx

C. Phương trình thuần nhất bậc 2 đối với sinx và cosx

D. Đáp án khác

Lời giải:

Điều kiện : cosx ≠ 0

Ta có: sin2 x+ 3tanx =cosx. (4sinx-cosx)

⇒ sin2 x+ 3tanx= 4sinx. cosx- cos2x

Chia cả hai vế cho cos2 x ta được :

Phương trình thuần nhất bậc 2 đối với sinx và cosx

⇒ tan2 x+ 3tanx (1+ tan2 x)- 4tanx + 1= 0

⇒ tan2 x + 3tanx + 3tan3 x – 4tanx + 1 = 0

⇒ 3tan3 x + tan2 x – tanx +1= 0

⇒ tanx= - 1

⇒ x= (- π)/4+kπ

Chọn A.

Câu 10:Giải phương trình: sin2 x. ( tanx+ 1) = 3sinx.(cosx – sinx) + 3

A. Phương trình thuần nhất bậc 2 đối với sinx và cosx

B.Phương trình thuần nhất bậc 2 đối với sinx và cosx

C.Phương trình thuần nhất bậc 2 đối với sinx và cosx

D. Đáp án khác

Lời giải:

Điều kiện: cosx ≠ 0 .

Ta có: sin2 x. (tanx+ 1) = 3sinx.( cosx- sinx) + 3

⇒ sin2 x. (tanx+ 1) = 3sinx. cosx – 3sin2 x+ 3

⇒ sin2 x.(tanx+ 1) = 3sinx.cosx + 3cos2 x ( vì 3-3sin2 x= 3cos2 x)

Chia cả hai vế phương trình cho cos2 x ≠ 0 ta được :

tan2x. ( tanx+ 1) = 3tanx + 3

⇒ tan2 x. ( tanx+ 1) – (3tanx+ 3)= 0

⇒ tan2 x. (tanx +1)- 3( tanx+ 1) = 0

⇒ (tan2 x- 3)( tanx+ 1) = 0

Phương trình thuần nhất bậc 2 đối với sinx và cosx

Chọn B.

D. Bài tập tự luyện

Bài 1. Giải phương trình: sin2x + 2sinx.cosx + 3cos2x – 3 = 0.

Bài 2. Cho phương trình: cos2x – sinx.cosx – 2sin2x – m = 0 (*).

a) Giải (*) khi m = 1.

b) Giải và biện luận theo m.

Bài 3. Giải phương trình: 2sin22x - sin2x.cos2x – 4cos22x = 2.

Bài 4. Giải phương trình: sin2x – 2sin2x = 2cos2x.

Bài 5. Giải phương trình: 2sin2x + 33sinx.cosx – cos2x = 4.

Xem thêm các dạng bài tập Toán lớp 11 có trong đề thi THPT Quốc gia khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 11

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 11 sách mới các môn học
Tài liệu giáo viên