200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

Bài 161: Tính tổng T tất cả các nghiệm của phương trình (x – 3)2x2-5x = 1.

Quảng cáo

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

Bài 162: Cho phương trình 2016x2 .2017x = 2016x. Mệnh đề nào sau đây là đúng?

A. Phương trình đã cho có hai nghiệm âm phân biệt.

B. Phương trình đã cho có một nghiệm bằng 0 và một nghiệm âm.

C. Phương trình đã cho có một nghiệm bằng 0 và một nghiệm dương.

D. Phương trình đã cho có hai nghiệm trái dấu và một nghiệm bằng 0.

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

Bài 163: giải phương trình 3.9x + 7.6x – 6.4x = 0

A. x = 1 – log2 3       B. x = -1 + log2 3       C. x = log3 2       D. x = -1

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

Bài 163: Giải bất phương trình 200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

A. 1 < x< 9       B. x > 1       C. x < 9       D. x > 9 hoặc x < 1

Điều kiện: x ∈ R (*)

Do 2/3<0 nên Bất phương trình ⇔ x2 – 6x + 4 < 4x – 5 ⇔ x2 – 10x + 9 < 0 ⇔ 1 < x < 9

Chọn A.

Quảng cáo

Bài 164: Bất phương trình 3x2-6x-16 < 9x+2 có số nghiệm nguyên là ?

A.11       B. 9       C.10       D. 12

Điều kiện: x ∈ R (*)

Ta có 9x+2 = (32)x+2 = 32(x+2) bất phương trình ⇔ 3x2-6x-16 < 32(x+2)

⇔ x2 – 6x – 16 < 2(x+2) hay x2 – 8x – 20 < 0

Do đó : -2<x<10

Mà x ∈ R ⇒ x ∈ {-1;0;1;2;3;4;5;6;7;8;9}

Chọn A.

Bài 165:

a/Giải bất phương trình 23x-1 > 5

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

b/ Giải bất phương trình (e – 2)2x-1 > 2

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

Bài 166:

a/Giải bất phương trình 2x + 2x +1 > 3x +1 + 3x +2

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

b/Giải bất phương trình 2x .3x +1 > 5

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

Bài 167: Bất phương trình 200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5) có số nghiệm nguyên là ?

A. 3       B.6       C. 4       D. 5

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

Bài 168: Bất phương trình 4x + 32x > 2.6x

A. x > 0       B. x ≠ 0       C. -1 < x < 0       D. 0 < x < 1

Điều kiện: x ∈ R (*)

Bất phương trình ⇔ (2x)2 + (3x)2 > 2.2x.3x ⇔ (2x – 3x)2 > 0 ⇔ 2x – 3x ≠ 0 ⇔ x ≠ 0

Chọn B.

Quảng cáo

Bài 169: Tìm tập nghiệm S của phương trình log3(2x + 1) – log3(x – 1) = 1

A. S = {4}       B.S = {3}       C. S = {-2}       D. 4

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

Vậy nghiệm duy nhất cuả phương trình là x = 4

Chọn A.

Bài 170:

a/Tập nghiệm của phương trình log2(3x – 7) = 3 là

A. {1}.       B. {-2}.       C. {5}.       D. {-3}

b/ Tập nghiệm của phương trình log2 x = 5 là

A. {5}.       B. {1}.       C. {25}.       D. {32}

a/ Điều kiện 200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

Pt log2 (3x – 7) = 3 ⇔ 3x – 7 = 23 ⇔ x = 5 thỏa mãn điều kiện.

Vậy phương trình có tập nghiệm là S = {5}.

Chọn C.

b/ Điều kiện x > 5

Phương trình log2 x = 5 ⇔ x = 25 ⇔ x = 32 thỏa mãn điều kiện.

Chọn D.

Bài 171: Phương trình log2 (x2 + 2x + 1) = 0 có bao nhiêu nghiệm:

A. 1.       B. 2.       C. 0.       D. 3

Điều kiện x2 + 2x + 1 > 0 ⇔ x ≠ 1

Phương trình log2 (x2 + 2x + 1) = 0 ⇔ x2 + 2x + 1 = 1 ⇔ x2 + 2x = 0 ⇔x = 0 hoặc x = -2 đều thỏa mãn điều kiện. Vậy phương trình có 2 nghiệm.

Chọn B.

Bài 172: Gọi n là số nghiệm của phương trình log2 x2 = 2log2(3x + 4). Tìm n

A. n = 0       B.n = -1       C. n = 2       D. n = 1

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

Bài 173:

a/ Tìm số nghiệm của phương trình 200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

A. 2.       B. 0.       C. 1.       D. 3.

b/ Tìm số nghiệm của phương trình 200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

A. 3.       B. 2.       C. 1.       D. 0.

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

Quảng cáo

Bài 174: Phương trình log2 (x + 2) + log4 x2 = 3 có nghiệm là:

A. x = -2, x = 4.       B. x = 2, x = 4.       C. x = 2.       D. x = 0.

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

Bài 175: Phương trình 200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

có nghiệm duy nhất x0 được biểu diễn dưới dạng 200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

, với m,n là các số nguyên. Tính tỉ số 200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

Bài 176: Phương trình log2 (3x – 4).log2x = log2 x có tổng bình phương các nghiệm là:

A. 6.       B. 5.       C. 10.       D. 17

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

Bài 177: Phương trình log2 x + 2log5 x = 2 + log2 x.log5 x có tích các nghiệm là:

A. 21.       B. 20.       C. 22.       D. 24

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

Vậy tích 2 nghiệm của phương trình là 20.

Chọn B.

Bài 178: Tổng các nghiệm của phương trình log2 x – log x.log2(4x) + 2log2x = 0 là:

A. 100.       B. 101.       C. 102.       D. 103

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

Tổng các nghiệm của phương trình là 101.

Chọn B.

Bài 179: Ngiệm của phương trình logx-2 2x = 3 là nghiệm của phương trình nào trong các phương trình dưới đây?

A. 2x2-3x = 32       B.x2 + 4x – 5 = 0

C. x3 – 4x2 + 3 = 0       D. log2(x2 – 8) = 3

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

Với x=4, thay lần lượt vào các đáp án, ta được log2(x2 – 8) = 3

Chọn D.

Bài 180:

a/ Phương trình 200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5) có hai nghiệm x1, x2. Khi đó K = 2x1x2 – 3 bằng

A. K = 4.       B. K = 5.       C. K = 6.       D. K = 7.

b/ Phương trình 200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5) có hai nghiệm x1, x2. Khi đó tích x1.x2 bằng?

A. 1.       B. 36.       C. 243.       D. 81.

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

Bài 181: Cho phương trình 200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5) . Khi đó phương trình tương đương với phương trình nào dưới đây:

A. 3x + 5x = 6x + 2.

B. 4x2-x+22x2-x+1 – 3 = 0.

C. x2 – 3x + 2 = 0.

D. 4x2 – 9x + 2 = 0.

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

Vậy tập hợp nghiệm của phương trình đã cho là 200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5) . Thay các nghiệm của phương trình ban đầu vào các đáp án ta thấy D thoả mãn.

Chọn D.

Bài 182: Phương trình lg(x – 3) +lg(x – 2) = 1 – lg 5 có tất cả bao nhiêu nghiệm trên tập số thực.

A. 2       B. 3       C. 1       D. 4

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

Bài 183: Phương trình 200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5) có hai nghiệm phân biệt là x1, x2. Tính giá trị của biểu thức P = log3 x1 +log27 x2 biết x1 < x2.

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

Bài 184: Phương trình 200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5) có tất cả bao nhiêu nghiệm ?

A. nghiệm       B. 2 nghiệm       C. 3 nghiệm       D. vô nghiệm

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

Với t = 0, ta có log2 x = 0 ⇔ x = 20 = 1

Với t = 2, ta có log2 x = 2 → x = 22 = 4

Vậy phương trình đã cho có hai nghiệm phân biệt.

Chọn B.

Bài 185:

a/ Tìm tập nghiệm của bất phương trình 200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

A. (-∞;-1]       B. [-1;+∞)       C. (-∞;-1)       D. (-1;+∞)

b/ Tìm tập nghiệm S của bất phương trình 200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

Bài 186:

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

Bài 187: Giải bất phương trình log1/2(x2 – 3x + 2) ≥ 1.

x ∈ (-∞;1).       B. x ∈ [0;2).       C. x∈ [0;1) ∪ (2;3].       D. x ∈ [0;2) ∪ (3;7).

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

Bài 188: Tập nghiệm của bất phương trình 200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5) là:

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

Bài 189: Biết tập nghiệm S của bất phương trình log0,3(4x2) ≥ log0,3(12x – 5) là một đoạn. Gọi m, M lần lượt là giá trị nhỏ nhất, lớn nhất của tập S. Mối liên hệ giữa m và M là

A. m + M = 3       B. m + M = 2        C. M – m = 3       D. M – m = 1

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

Bài 190:

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

Bài 191: Tập nghiệm của bất phương trình log2 x ≤ logx 2 là

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

Bài 192: Cho phương trình 2.5x – (m + 2)5x + 2m – 1 = 0 với m là tham số thực. Có bao nhiêu giá trị nguyên m ∈ [0;2018] để phương trình có nghiệm?

A. 2015       B. 2016       C. 2018       D. 2017

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

Bài 193: Số nghiệm thực của phương trình 200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

A. 3       B. 2       C. 0       D. 1

Điều kiện x – 1 > 0 ⇔ x > 1.

Khi đó phương trình 200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

Kết hợp với điều kiện suy ra nghiệm của phươn trình là: 200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

Chọn D.

Bài 194: Một người gửi số tiền 2 triệu đồng vào một ngân hàng với lãi suất 0,65%/tháng. Biết rằng nếu người đó không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu (người ta gọi đó là lãi kép). Số tiền người đó lãnh được sau hai năm, nếu trong khoảng thời gian này không rút tiền ra và lãi suất không đổi là:

A. (2,0065)24 triệu đồng.       B. (1,0065)24 triệu đồng.

C. 2.(1,0065)24 triệu đồng.       D. 2.(2,0065)24 triệu đồng.

Gọi số tiền gửi vào vào là M đồng, lãi suất là r/tháng.

+ Cuối tháng thứ nhất: số tiền lãi là: Mr. Khi đó số vốn tích luỹ đượclà:

T1 = M + Mr = M(1 + r).

+ Cuối tháng thứ hai: số vốn tích luỹ được là:

T2 = T1 + T1r = T1(1 + r) = M(1 + r)(1 + r) = M(1 + r)2.

+ Tương tự, cuối tháng thứ n: số vốn tích luỹ đượclà: Tn = M(1 + r)n.

Áp dụng công thức trên với M = 2, r = 0,0065, n = 24, thì số tiền người đó lãnh được sau 2 năm (24 tháng) là: T24 = 2.(1+0,0065)24 = 2.(1,0065)24 triệu đồng.

Chọn C.

Bài 195: Một người gửi số tiền M triệu đồng vào một ngân hàng với lãi suất 0,7%/tháng. Biết rằng nếu người đó không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu (người ta gọi đó là lãi kép). Sau ba năm, người đó muốn lãnh được số tiền là 5 triệu đồng, nếu trong khoảng thời gian này không rút tiền ra và lãi suất không đổi, thì người đó cần gửi số tiền M là:

A. 3 triệu 600 ngàn đồng.       B. 3 triệu 800 ngàn đồng.

C. 3 triệu 700 ngàn đồng.       D. 3 triệu 900 ngàn đồng.

Áp dụng công thức trên với Tn = 5, r = 0,007, n = 36, thì số tiền người đó cần gửi vào ngân hàng trong 3 năm (36 tháng) là:

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

Bài 196: Lãi suất gửi tiết kiệm của các ngân hàng trong thời gian qua liên tục thay đổi. Bác An gửi vào một ngân hàng số tiền 5 triệu đồng với lãi suất 0,7%/tháng. Sau sáu tháng gửi tiền, lãi suất tăng lên 0,9%/tháng. Đến tháng thứ 10 sau khi gửi tiền, lãi suất giảm xuống 0,6%/tháng và giữ ổn định. Biết rằng nếu bác An không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu (người ta gọi đó là lãi kép). Sau một năm gửi tiền, bác An rút được số tiền là (biết trong khoảng thời gian này bác An không rút tiền ra):

A. ≈5436521,164 đồng. B. ≈5468994,09 đồng.

C. ≈5452733,453 đồng. D. ≈5452771,729 đồng.

Số vốn tích luỹ của bác An sau 6 tháng gửi tiền với lãi suất 0,7%/tháng là: T1 = 5.(1,007)6

triệu đồng;

Số vốn tích luỹ của bác An sau 9 tháng gửi tiền (3 tháng tiếp theo với lãi suất 0,9%/tháng) là: T2 = T1.(1,009)3 = 5.(1,007)6.(1,009)3 triệu đồng;

Do đó số tiền bác An lãnh được sau 1 năm (12 tháng) từ ngân hàng (3 tháng tiếp theo sau đó với lãi suất 0,6%/tháng) là: T = T2.(1,006)3 = 5.(1,007)6.(1,009)3.(1,006)3 triệu đồng ≈5452733,453 đồng

Chọn C.

Bài 197: (Đề thi thử Sở Thanh Hóa) Một người vay ngân hàng 100 triệu đồng với lãi suất là 0,7%/tháng theo thỏa thuận cứ mỗi tháng người đó sẽ trả cho ngân hàng 5 triệu đồng và cứ trả hàng tháng như thế cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng thì người đó trả được hết nợ ngân hàng.

A. 21.       B. 22.       C. 23.       D. 24.

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

Bài 198: Cường độ một trận động đất M (richter) được cho bởi công thức M = logA – logA0, với A là biên độ rung chấn tối đa và A0 là một biên độ chuẩn (hằng số). Đầu thế kỷ 20, một trận động đất ở San Francisco có cường độ 8,3 độ Richter. Trong cùng năm đó, trận động đất khác Nam Mỹ có biên độ mạnh hơn gấp 4 lần. Cường độ của trận động đất ở Nam Mỹ là

A. 2,075 độ Richter.       B. 33.2 độ Richter.       C. 8.9 độ Richter.       D. 11 độ Richter.

Cường độ trận động đất ở San Francisco là 8,3 = log A – log A0

Trận động đất khác Nam Mỹ có biên độ là 4A

Suy ra cường độ là

M = log 4A – log A0 = log 4 + log A – log A0 = log 4 + 8,3 ≈ 8,9.

Chọn C.

Bài 199: Có bao nhiêu giá trị nguyên dương của m để hàm số y = 7x3+3x2+(9-3m)x+1 đồng biến trên [0;1]?

A. 5       B. 6       C. Vô số       D. 3

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

Bài 200: Gọi S là tổng tất cả giá trị nguyên của tham số m (m < 3) để bất phương trình 200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5) vô nghiệm. Tính S.

A. S = -3.       B. S = -7.       C. S = 0.       D. S = -4.

200 câu trắc nghiệm Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit có lời giải chi tiết (cơ bản - phần 5)

Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:

Ngân hàng trắc nghiệm miễn phí ôn thi THPT Quốc Gia tại khoahoc.vietjack.com

KHÓA HỌC GIÚP TEEN 2002 ĐẠT 9-10 THI THPT QUỐC GIA

Tổng hợp các video dạy học từ các giáo viên giỏi nhất - CHỈ TỪ 399K tại khoahoc.vietjack.com

ham-so-mu-ham-so-luy-thua-ham-so-logarit.jsp

Các loạt bài lớp 12 khác
Khóa học 12