275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

Câu 1: Hàm số275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1) nghịch biến trên khoảng nào?

Quảng cáo

   A. (-3;1).

   B. (1; +∞).

   C. (-∞; -3).

   D. (-3; -1) và (-1; 1).

Chọn đáp án: D.

Giải thích:

Ta có: D = R và275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1) y’ = 0 ⇔ x = -3 ∨ x = 1

BBT:

275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

Vậy hàm số nghịch biến trên các khoảng (-3; -1) và (-1; 1)

Câu 2: Hàm số y = x4 – 2x2 + 3 đồng biến trên các khoảng nào?

   A. R.

   B. (-1 ; 0) và (0 ; 1).

   C. (-∞; -1) và (0 ; 1).

   D. (-1 ;0) và (1; +∞).

Chọn đáp án: D.

Giải thích:

y = x4 – 2x2 + 3 => y’ = 4x3 – 4x.

y’ = 0 ⇔ 4x3 – 4x = 0 ⇔275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

Vậy hàm số đồng biến trên khoảng (-1 ;0) và (1; +∞).

Câu 3: Hàm số y = x3 – 3x2 + 3x + 2017

   A. Đồng biến trên TXĐ.

   B. Nghịch biến trên tập xác định.

   C. Đồng biến trên (1; +∞).

   D. Đồng biến trên (-5; +∞).

Chọn đáp án: A.

Giải thích:

y = x3 – 3x2 + 3x + 2017 => y’ = 3x2 – 6x + 3 = 3(x – 1)2 ≥ 0, ∀x ∈ R.

Vậy hàm số đồng biến trên tập xác định.

Quảng cáo

Câu 4: Cho hàm số y = - x3 – x2 + 5x + 4. Mệnh đề nào sau đây đúng?

   A. Hàm số nghịch biến trên (-5/3; 1).

   B. Hàm số đồng biến trên (-5/3; 1).

   C. Hàm số đồng biến trên (-∞;-5/3).

   D. Hàm số đồng biến trên (1; +∞).

Chọn đáp án: B.

Giải thích:

275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

y = - x3 – x2 + 5x + 4 => y’ = -3x2 – 2x + 5 = 0 ⇔275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

Hàm số đồng biến trên (-5/3; 1).

Câu 5: Các khoảng đồng biến của hàm số y = x3 – 3x2 + 2 là:

   A. (-∞; 0).

   B. (0; 2).

   C. (-∞; 0) ∪ (2; +∞).

   D. (-∞; 0) và (2; +∞).

Chọn đáp án: D.

Giải thích:

Ta có y’ = 3x2 – 6x; Y' = 0 ⇔275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

Xét dấu y’ suy ra hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞).

Câu 6: Hỏi hàm số y = 2x3 + 3x2 + 5 nghịch biến trên khoảng nào?

   A. (-∞; -1)

   B. (-1; 0)

   C. (0; +∞)

   D. (-3; 1)

Chọn đáp án: B.

Giải thích:

Có y’ = 6x2 + 6x = 0 ⇔275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

Hàm số nghịch biến trong khoảng giữa. Vậy chọn B

Câu 7: Hàm số y = x4 – 2x2 – 1 đồng biến trên khoảng nào sau đây:

   A. (-∞; -1) và (0; 1).

   B. (-1; 0) và (0; 1).

   C. (-1;0) và (1; +∞).

   D. Đồng biến trên R.

Chọn đáp án: C.

Giải thích:

Ta có y’ = 4x3 – 4x; y’ = 0 ⇔ 4x3 – 4x = 0 275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

Lập bảng biến thiên

275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

Hàm số đồng biến trên các khoảng (-1;0) và (1; +∞).

Quảng cáo

Câu 8: Hàm số y = x3 – 3x2 nghịch biến trên khoảng nào dưới đây?

   A. (-1;1).

   B. (-∞; 1).

   C. (0; 2).

   D. (2; +∞).

Chọn đáp án: C.

Giải thích:

y = x3 – 3x2 => y’ = 3x2 – 6x; y’ = 0 ⇔ 3x2 – 6x ⇔275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

y’ < 0 ⇔ 3x2 – 6x < 0 ⇔ 0 < x < 2

Câu 9: Cho hàm số y = x4 – 8x2 – 4. Các khoảng đồng biến của hàm số là:

   A. (-2;0) và (2; +∞).

   B. (-2; 0) và (0; 2).

   C. (-∞; -2) và (0; 2).

   D. (-∞; -2) và (2; +∞).

Chọn đáp án: A.

Giải thích:

Ta có: y’ = 4x3 – 16x, y’ = 0 ⇔275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

Ta có bảng biến thiên

275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

Vậy hàm số đồng biến trên các khoảng (-2;0) và (2; +∞)

Câu 10: Cho hàm số y = (3-x)/(x+1). Mệnh đề nào dưới đây đúng?

   A. Hàm số đồng biến trên mỗi khoảng (-∞; -1) và (-1; +∞).

   B. Hàm số nghịch biến với mọi x ≠ 1.

   C. Hàm số nghịch biến trên tập R \ {-1}.

   D. Hàm số nghịch biến trên mỗi khoảng (-∞; -1) và (-1; +∞).

Chọn đáp án: D.

Giải thích:

TXĐ: D = R \ {-1}.

Chiều biến thiên:275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

y’ không xác định khi x = 1.

y’ luôn âm với mọi x ≠ 1.

Vậy hàm số nghịch biến trên các khoảng (-∞; -1) và (-1; +∞)

Câu 11: Cho hàm số y = 1/3x3 - 1/2x2 – 12x – 1. Mệnh đề nào sau đây đúng ?

   A. Hàm số đồng biến trên khoảng (4; +∞).

   B. Hàm số nghịch biến trên khoảng (-3; +∞).

   C. Hàm số đồng biến trên khoảng (-∞; 4).

   D. Hàm số đồng biến trên khoảng (-3; 4).

Chọn đáp án: A.

Giải thích:

y' = x2 – x – 12

y’ > 0 ⇔ x2 – x – 12 > 0

275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

Vậy hàm số đồng biến trên (-∞ ; -3) và (4; +∞)

Câu 12: Cho hàm số y = x4 – 2x2 – 3. Khẳng định nào sau đây là sai?

   A. Hàm số nghịch biến trên khoảng (-∞; -1).

   B. Hàm số nghịch biến trên khoảng (0; 1).

   C. Hàm số nghịch biến trên khoảng (-1; 0).

   D. Hàm số đồng biến trên khoảng (1; +∞).

Chọn đáp án: C.

Giải thích:

TXĐ: D = R.

y' = 4x3 – 4x ⇔275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

BXD

275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

Khẳng định C là sai.

Câu 13: Các khoảng nghịch biến của hàm số y = -1/4x4 + 2x2 - 5 là

   A. (-2; 0) và (2; +∞).

   B. (-1; 0) và (1 ; +∞).

   C. (-∞; -2) và (0 ; 2).

   D. (-∞; -1) và (1; +∞).

Chọn đáp án: A.

Giải thích:

Tập xác định D = R.

y' = -x3 + 4x.

y’ = 0 ⇔ -x3 + 4x = 0 ⇔ x = 0 hoặc x = -2 hoặc x = 2

Bảng biến thiên:

275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

Vậy hàm số nghịch biến trên (-2; 0) và (2; +∞).

Quảng cáo

Câu 14: Hàm số y = -x3 + 3x – 5 đồng biến trên khoảng nào sau đây?

   A. (-1; 1).

   B. (-∞; -1).

   C. (1; +∞).

   D. (-∞; 1).

Chọn đáp án: A.

Giải thích:

Tập xác định D = R.

y' = -3x2 + 3

y’ = 0 ⇔ -3x2 + 3 = 0 ⇔ x = 1 hoặc x = -1.

Bảng biến thiên:

275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

Từ bảng biến thiên ta thấy hàm số đồng biến trên (-1; 1).

Câu 15: Hàm số y = x3 – 3x2 + 2 đồng biến trên khoảng nào trong các khoảng cho dưới đây.

   A. (0; 2).

   B. (-∞; 2).

   C. (2; +∞).

   D. R.

Chọn đáp án: C.

Giải thích:

Tập xác định: D = R

Ta có y’ = 3x2 – 6x; y’ = 0 ⇔275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞).

Câu 16: Hỏi hàm số y = -1/3x3 + 2x2 + 5x – 44 đồng biến trên khoảng nào?

   A. (-∞; -1).

   B. (-∞; 5).

   C. (5; +∞).

   D. (-1; 5).

Chọn đáp án: D.

Giải thích:

y’ = -x2 + 4x + 5

y’ = 0 ⇔275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

Bảng biến thiên:

275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

Vậy hàm số đồng biến trên khoảng (-1; 5).

Câu 17: Hàm số y = - x3 + 3x2 + 2 đồng biến trên khoảng nào?

   A. (0; 2).

   B. (2; +∞).

   C. (-∞; +∞).

   D. (-∞; 0)

Chọn đáp án: A.

Giải thích:

y’ = -3x2 + 6x

y’ = 0 ⇔275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

Bảng biến thiên:

275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

Vậy hàm số đồng biến trên khoảng (0; 2).

Câu 18: Hàm số y = x3 – 3x đồng biến trên khoảng nào?

   A. (-∞; 0).

   B. (-1;1).

   C. (0; +∞).

   D. (-∞; +∞).

Chọn đáp án: B.

Giải thích:

Ta có y’ = 3x2 – 3; y’ = 0 ⇔ x = ± 1.

Hàm số y = x3 – 3x nghịch biến trên khoảng (-1; 1).

Câu 19: Hàm số nào sau đây đồng biến trên mỗi khoảng xác định của nó:

   A. 275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

   B. 275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

   C. 275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

   D. 275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

Chọn đáp án: B.

Giải thích:

275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

nên hàm số nghịch biến trên mỗi khoảng xác định của nó

275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

nên hàm số đồng biến trên mỗi khoảng xác định của nó

275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

nên hàm số nghịch biến trên mỗi khoảng xác định của nó

275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

nên hàm số nghịch biến trên mỗi khoảng xác định của nó

Câu 20: Cho hàm số y = x4 – 2x2 + 3. Tìm các khoảng đồng biến của hàm số

   A. (-∞; -1) và (0; 1)

   B. (-1; 0) và (1; +∞).

   C. (-∞; 0) và (1; +∞).

   D. R.

Chọn đáp án: A.

Giải thích:

TXD: R

Ta có y’ = 4x3 – 4x2 => y’ = 0 275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

Ta có bảng xét dấu của đạo hàm

275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

Vậy hàm số nghịch biến trên các khoảng (-∞; -1) và (0; 1).

Câu 21: Hàm số nào sau đây luôn đồng biến trên từng khoảng xác định của chúng

   A. y = 2/x.

   B. y = (2x+3)/(x-1).

   C. y = x - 1/(x-1).

   D. y = x + 10/x.

Chọn đáp án: C.

Giải thích:

Ta nhận thấy hàm số y = x - 1/(x-1) có y’ = 1 + 1/(x-1)2 > 0, ∀x ≠ 1, do đó hàm số đồng biến trên từng khoảng xác định.

Câu 22: Cho hàm số y = (2x+1)/(x+1). Tìm mệnh đề đúng.

   A. Hàm số luôn nghịch biến trên R \ {-1}.

   B. Hàm số luôn đồng biến trên R \ {-1}

   C. Hàm số nghịch biến trên (-∞; -1); (-1; +∞)

   D. Hàm số đồng biến trên (-∞; -1) và (-1; +∞).

Chọn đáp án: D.

Giải thích:

TXD: x ≠ -1.

Xét hàm số y = (2x+1)/(x+1) ta có y’ = 1/(x+1)2 > 0, ∀x > -1

Vậy hàm số đồng biến trên các khoảng (-∞; -1) và (-1; +∞).

Câu 23: Cho hàm số y = 1/4x4 – 2x2 + 3. Khẳng định nào sau đây đúng?

   A. Hàm số nghịch biến trên khoảng (-2; 0) và (2; +∞).

   B. Hàm số đồng biến trên khoảng (-∞; -2) và (2; +∞).

   C. Hàm số nghịch biến trên khoảng (-∞; -2) và (0; 2).

   D. Hàm số nghịch biến trên khoảng (-∞; 0).

Chọn đáp án: C.

Giải thích:

Ta có y’ = x3 – 4x = x(x2 – 4); y’ = 0 ⇔ x = 0, x = ± 2.

Hàm số nghịch biến trên khoảng (-∞; -2) và (0; 2).

Hàm số đồng biến trên khoảng (-2; 0) và (2; +∞).

Do đó mệnh đề đúng là: Hàm số nghịch biến trên khoảng (-∞; -2) và (0; 2).

Câu 24: Hàm số y = x3 – 3x2 – 9x + 1 đồng biến trên mỗi khoảng:

   A. (-1; 3) và (3; +∞).

   B. (-∞; -1) và (1; 3).

   C. (-∞; 3) và (3; +∞).

   D. (-∞; -1) và (3; +∞).

Chọn đáp án: D.

Giải thích:

Ta có y’ = 3x2 – 6x – 9 nên y’ = 0 ⇔275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

Bảng xét dấu của y’ là

275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

Do đó hàm số đồng biến trên mỗi khoảng (-∞; -1) và (3; +∞).

Câu 25: Cho hàm số y = -x4 + 2x2. Hỏi hàm số đã cho đồng biến trên khoảng nào sau đây?

   A. (-∞; +∞)

   B. (3; +∞)

   C. (-∞; -1)

   D. (0; 3)

Chọn đáp án: C.

Giải thích:

Hàm số y = -x4 + 2x2 có y’ = -4x3 + 4x, y’ ≥ 0 ⇔275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

Vậy hàm số đã cho đồng biến trên (-∞; -1) và (0; 1)

Câu 26: Các khoảng đồng biến của hàm số y = -x3 + 3x2 + 1 là:

   A. (-∞; 0), (2; +∞).

   B. (0; 2).

   C. (-2; 2).

   D. (-2; 0).

Chọn đáp án: B.

Giải thích:

y = -x3 + 3x2 + 1, suy ra y’ = -3x2 + 6x; y’ = 0 ⇔275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1) Lập bảng biến thiên suy ra hàm số đồng biến trên (0; 2).

Câu 27: Tìm khoảng nghịch biến của hàm số y = 2x3 – 9x2 + 12x + 4

   A. (1; 2).

   B. (-∞; 1).

   C. (2; 3).

   D. (2; +∞).

Chọn đáp án: A.

Giải thích:

Ta có y’ = 6x2 – 18x + 12 = 6(x2 – 3x + 2) = 0 ⇔275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

Bảng biến thiên:

275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

Hàm số nghịch biến trên khoảng (1; 2).

Câu 28: Cho hàm số y = (-x+5)/(x+2). Mệnh đề nào sau đây là đúng?

   A. Hàm số nghịch biến trên mỗi khoảng (-∞; -2) và (-2; +∞).

   B. Hàm số đồng biến trên mỗi khoảng (-∞; -2) và (-2; +∞).

   C. Hàm số nghịch biến trên khoảng (-∞; 5).

   D. Hàm số nghịch biến trên R \ {-2}.

Chọn đáp án: A.

Giải thích:

TXĐ: D = R \ {-2}

Chiều biến thiên275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

y’ không xác định khi x = -2

y’ luôn luôn âm với mọi x ≠ -2

Vậy hàm số nghịch biến trên mỗi khoảng (-∞; -2) và (-2; +∞).

Câu 29: Hàm số y = 2x2 – x4 nghịch biến trên những khoảng nào?

   A. (-1; 0).

   B. (-1; 0); (1; +∞).

   C. (-∞; -1); (0; 1).

   D. (-1; 1).

Chọn đáp án: B.

Giải thích:

Ta có: y’ = -4x3 + 4x. Y’ = 0 ⇔275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

Từ bảng biến thiên suy ra y’ < 0 ⇔ x ϵ (-1; 0) ∪ (1; +∞) => Hàm số nghịch biến trên các khoảng (-1; 0); (1; +∞).

Câu 30: Kết luận nào sau đây về tính đơn điệu của hàm số y = (2x+1)/(x+1) là đúng?

   A. Hàm số đồng biến trên các khoảng (-∞; -1) và (-1; +∞).

   B. Hàm số luôn luôn đồng biến trên R

   C. Hàm số nghịch biến trên các khoảng (-∞; -1) và (-1; +∞).

   D. Hàm số luôn luôn nghịch biến trên R \ {-1}.

Chọn đáp án: A.

Giải thích:

Tập xác định D = R \ {-1}.

Ta có y’ = 1/(x+1)2 > 0, ∀x ≠ -1.

Suy ra hàm số đã cho đồng biến trên từng khoảng xác định của nó.

Câu 31: Cho hàm số f(x) = (x3/3) - (x2/2) – 6x + 3/4.

   A. Hàm số đồng biến trên khoảng (-2; 3).

   B. Hàm số nghịch biến trên khoảng (-2; 3).

   C. Hàm số nghịch biến trên (-∞; -2).

   D. Hàm số đồng biến trên (-2; +∞).

Chọn đáp án: B.

Giải thích:

Tập xác định D = R.

Ta có f’(x) = x2 – x – 6, f’(x) = 0 ⇔275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

Bảng biến thiên

275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

Câu 32: Cho hàm số y = -x3 + 3x2 – 3x + 7. Mệnh đề nào sau đây là đúng?

   A. Hàm số nghịch biến trên R.

   B. Hàm số đồng biến trên R.

   C. Hàm số đạt cực đại tại x = 1.

   D. Hàm số đạt cực tiểu tại x = 1.

Chọn đáp án: A.

Giải thích:

y = -x3 + 3x2 – 3x + 7, suy ra y’ = -3x2 + 6x – 3 = -3(x – 1)2 ≤ 0 ∀x ∈ R.

Vậy hàm số nghịch biến trên R.

Câu 33: Hàm số y = x3 – 3x + 2 đạt cực đại tại

   A. x = 1.

   B. x = 0.

   C. x = -1.

   D. x = 2.

Chọn đáp án: C.

Giải thích:

Ta có y’ = 3x2 – 3. Khi đó: y’ = 0 ⇔275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

Xét dấu y’. Ta có: y’ > 0 ⇔275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1) và y’ < 0 ⇔ -1 < x < 1.

Khi đó ta có hàm số đạt cực đại tại x = -1.

Câu 34: Tìm số cực trị của hàm số y = x4 + 4x3

   A. 1      B. 2

   C. 3      D. 4

Chọn đáp án: A.

Giải thích:

y = x4 + 4x3 TXĐ: D = R

y’ = 4x3 + 12x2 = 0 ⇔275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

Lập bảng xét dấu của y’ và suy ra hàm số có 1 cực trị

Câu 35: Tìm số điểm cực trị của hàm số y = x4 – 2x2 + 2

   A. 0      B. 1

   C. 3      D. 2

Chọn đáp án: C.

Giải thích:

TXĐ: D = R.

Ta có y’ = 4x3 – 4x, y’ = 0 ⇔ 4x3 – 4x = 0 ⇔275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

Bảng biến thiên:

275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

Dựa và bảng biến thiên ta thấy hàm số có ba cực trị.

Câu 36: Tìm tất cả các điểm cực đại của hàm số y = -x4 + 2x2 + 1

   A. x = ±1.

   B. x = -1.

   C. x = 1.

   D. x = 0.

Chọn đáp án: A.

Giải thích:

275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

Ta có: y = -x4 + 2x2 + 1.

Tập xác định: D = R.

y’ = -4x3 + 4x.

y' = 0 ⇔ -4x3 + 4x = 0 ⇔275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

Bảng biến thiên:

275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

Suy ra hàm số đạt cực đại tại x = ±1.

Câu 37: Khẳng định nào sau đây là khẳng định sai về hàm số y = (2x-1)/(x+1).

   A. Hàm số đồng biến trên (1; +∞)

   B. Hàm số đồng biến trên R

   C. Hàm số không có cực trị.

   D. Hàm số đồng biến trên (-∞; -1)

Chọn đáp án: B.

Giải thích: Đồ thị hàm số bậc nhất trên bậc nhất đồng biến hoặc nghịch biến trên từng khoảng xác định.

Câu 38: Đồ thị hàm số y = -2x3 + x2 – 5x + 1 có bao nhiêu điểm cực trị?

   A. 0      B. 1

   C. 2      D. 3

Chọn đáp án: A.

Giải thích:

y = -2x3 + x2 – 5x + 1 => y’ = -6x2 + 2x – 5 => ∆ = -116 < 0

Hàm số đã cho không có điểm cực trị.

Câu 39: Hàm số y = x4 – 2x3 + 2x có bao nhiêu điểm cực trị?

   A. 0      B. 1

   C. 2      D. 3

Chọn đáp án: B.

Giải thích:

275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

y’ = 4x3 – 6x2 + 2 = 0 ⇔ (4x + 2)(x – 1)2 = 0 ⇔275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

Hàm số chỉ đạt cực trị tại x = -1/2

Câu 40: Hàm số y = 3x2 – 2x3 đạt cực trị tại

   A. x = 0; xCT = -1.

   B. x = 1; xCT = 0.

   C. x = 0; xCT = 1.

   D. x = -1; xCT = 0.

Chọn đáp án: B.

Giải thích:

y = 3x2 – 2x3 => y’ = -6x2 + 6x = 0 ⇔275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

275 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số có lời giải chi tiết (cơ bản - phần 1)

Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:

Ngân hàng trắc nghiệm miễn phí ôn thi THPT Quốc Gia tại khoahoc.vietjack.com

KHÓA HỌC GIÚP TEEN 2002 ĐẠT 9-10 THI THPT QUỐC GIA

Tổng hợp các video dạy học từ các giáo viên giỏi nhất - CHỈ TỪ 399K tại khoahoc.vietjack.com

ung-dung-dao-ham-de-khao-sat-va-ve-do-thi-cua-ham-so.jsp

Các loạt bài lớp 12 khác
Khóa học 12