Cách tìm nguyên hàm của hàm số cực hay
Cách tìm nguyên hàm của hàm số cực hay
Bài giảng: Cách làm bài tập nguyên hàm và phương pháp tìm nguyên hàm của hàm số cực nhanh - Cô Nguyễn Phương Anh (Giáo viên VietJack)
A. Phương pháp giải & Ví dụ
I. NGUYÊN HÀM VÀ TÍNH CHẤT
1. Nguyên hàm
Định nghĩa: Cho hàm số f(x) xác định trên K (K là khoảng, đoạn hay nửa khoảng). Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu F'(x) = f(x) với mọi x ∈ K.
Định lí:
1) Nếu F(x) là một nguyên hàm của hàm số f(x) trên K thì với mỗi hằng số C, hàm số G(x) = F(x) + C cũng là một nguyên hàm của f(x) trên K.
2) Nếu F(x) là một nguyên hàm của hàm số f(x) trên K thì mọi nguyên hàm của f(x) trên K đều có dạng F(x) + C, với C là một hằng số.
Do đó F(x)+C, C ∈ R là họ tất cả các nguyên hàm của f(x) trên K. Ký hiệu ∫f(x)dx = F(x) + C.
2. Tính chất của nguyên hàm
Tính chất 1: (∫f(x)dx)' = f(x) và ∫f'(x)dx = f(x) + C
Tính chất 2: ∫kf(x)dx = k∫f(x)dx với k là hằng số khác 0.
Tính chất 3: ∫[f(x) ± g(x)]dx = ∫f(x)dx ± ∫g(x)dx
3. Sự tồn tại của nguyên hàm
Định lí: Mọi hàm số f(x) liên tục trên K đều có nguyên hàm trên K.
4. Bảng nguyên hàm của một số hàm số sơ cấp
Nguyên hàm của hàm số sơ cấp | Nguyên hàm của hàm số hợp (u = u(x) |
II. PHƯƠNG PHÁP TÍNH NGUYÊN HÀM
Phương pháp dùng định nghĩa vá tính chất
+ Biến đổi các hàm số dưới dấu nguyên hàm về dạng tổng, hiệu của các biểu thức chứa x.
+ Đưa các mỗi biểu thức chứa x về dạng cơ bản có trong bảng nguyên hàm.
+ Áp dụng các công thức nguyên hàm trong bảng nguyên hàm cơ bản.
Ví dụ minh họa
Bài 1: Tìm nguyên hàm của hàm số
Hướng dẫn:
Bài 2: Tìm nguyên hàm của hàm số
Hướng dẫn:
Bài 3: Tìm nguyên hàm của hàm số
Hướng dẫn:
B. Bài tập vận dụng
Bài 1: Tìm nguyên hàm của hàm số
Bài 2: Tìm nguyên hàm của hàm số
Bài 3: Tìm nguyên hàm của hàm số
Bài 4: Tìm nguyên hàm của hàm số
Bài 5: Tìm nguyên hàm của hàm số
Bài 6: Tìm nguyên hàm của hàm số
Bài 7: Tìm nguyên hàm của hàm số
Bài 8: Tìm nguyên hàm của hàm số
Bài 9: Tìm nguyên hàm của hàm số
Bài 10: Tìm nguyên hàm của hàm số
Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:
- Trắc nghiệm tìm nguyên hàm của hàm số
- Dạng 2: Tìm nguyên hàm bằng phương pháp đổi biến số
- Trắc nghiệm tìm nguyên hàm bằng phương pháp đổi biến số
- Dạng 3: Tìm nguyên hàm bằng phương pháp từng phần
- Trắc nghiệm tìm nguyên hàm bằng phương pháp từng phần
- Dạng 4: Tìm nguyên hàm của hàm số hữu tỉ
- Trắc nghiệm tìm nguyên hàm của hàm số hữu tỉ
- Dạng 5: Tìm nguyên hàm thỏa mãn điều kiện cho trước
- Trắc nghiệm tìm nguyên hàm thỏa mãn điều kiện cho trước
Giới thiệu kênh Youtube VietJack
Ngân hàng trắc nghiệm miễn phí ôn thi THPT Quốc Gia tại khoahoc.vietjack.com
- Hơn 75.000 câu trắc nghiệm Toán có đáp án
- Hơn 50.000 câu trắc nghiệm Hóa có đáp án chi tiết
- Gần 40.000 câu trắc nghiệm Vật lý có đáp án
- Hơn 50.000 câu trắc nghiệm Tiếng Anh có đáp án
- Kho trắc nghiệm các môn khác
- Soạn Văn 12
- Soạn Văn 12 (bản ngắn nhất)
- Văn mẫu lớp 12
- Giải bài tập Toán 12
- Giải BT Toán 12 nâng cao (250 bài)
- Bài tập trắc nghiệm Giải tích 12 (100 đề)
- Bài tập trắc nghiệm Hình học 12 (100 đề)
- Giải bài tập Vật lý 12
- Giải BT Vật Lí 12 nâng cao (360 bài)
- Chuyên đề: Lý thuyết - Bài tập Vật Lý 12 (có đáp án)
- Bài tập trắc nghiệm Vật Lí 12 (70 đề)
- Luyện thi đại học trắc nghiệm môn Lí (18 đề)
- Giải bài tập Hóa học 12
- Giải bài tập Hóa học 12 nâng cao
- Bài tập trắc nghiệm Hóa 12 (80 đề)
- Luyện thi đại học trắc nghiệm môn Hóa (18 đề)
- Giải bài tập Sinh học 12
- Giải bài tập Sinh 12 (ngắn nhất)
- Chuyên đề Sinh học 12
- Đề kiểm tra Sinh 12 (có đáp án)(hay nhất)
- Ôn thi đại học môn Sinh (theo chuyên đề)
- Luyện thi đại học trắc nghiệm môn Sinh (18 đề)
- Giải bài tập Địa Lí 12
- Giải bài tập Địa Lí 12 (ngắn nhất)
- Giải Tập bản đồ và bài tập thực hành Địa Lí 12
- Bài tập trắc nghiệm Địa Lí 12 (70 đề)
- Luyện thi đại học trắc nghiệm môn Địa (20 đề)
- Giải bài tập Tiếng anh 12
- Giải bài tập Tiếng anh 12 thí điểm
- Giải bài tập Lịch sử 12
- Giải tập bản đồ Lịch sử 12
- Bài tập trắc nghiệm Lịch Sử 12
- Luyện thi đại học trắc nghiệm môn Sử (20 đề)
- Giải bài tập Tin học 12
- Giải bài tập GDCD 12
- Giải bài tập GDCD 12 (ngắn nhất)
- Bài tập trắc nghiệm GDCD 12 (37 đề)
- Luyện thi đại học trắc nghiệm môn GDCD (20 đề)
- Giải bài tập Công nghệ 12