Bài 5 trang 196 SBT Toán 9 Tập 2



Bài tập ôn cuối năm

Bài 5 trang 196 Sách bài tập Toán 9 Tập 2: BD là đường phân giác của tam giác ABC. Chứng minh rằng BD2 = AB.BC - AD.DC.

Quảng cáo

Lời giải:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

(O)  là đường tròn ngoại tiếp tam giác ABC

Gọi E là giao điểm của tia BD và đường tròn ngoại tiếp tam giác ABC

Xét tam giác BEA và tam giác BCD có:

ABE^=DBC^ (do BD là tia phân giác của góc B)

BEA^=BCD^ (do hai góc nội tiếp cùng chắn cung AB)

Do đó, tam giác BEA và tam giác BCD đồng dạng  (góc – góc)

=> ABBD=BEBC

Mà BE = BD + DE => ABDB=BD+DEBC

=> BD2 + BD.DE = AB.BC

=> BD2 = AB.BC - BD.DE (1)

Xét tam giác BDC và tam giác ADE có:

BDC^=ADE^ (hai góc đối đỉnh)

DBC^=DAE^ (hai góc nội tiếp cùng chắn cung CE)

Quảng cáo

Do đó, tam giác BDC và tam giác ADE đồng dạng (góc – góc)

=> BDDC=ADDE => BD.DE = AD.DC (2)

Từ (1) và (2) ta suy ra: BD2 = AB.BC - AD.DC (điều cần phải chứng minh)

Các bài giải bài tập sách bài tập Toán 9 (SBT Toán 9) khác:

Xem thêm các loạt bài Để học tốt Toán lớp 9 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH ĐỀ THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 9

Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và sách dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải sách bài tập Toán 9 | Giải sbt Toán 9 của chúng tôi được biên soạn bám sát nội dung Sách bài tập Toán 9 Tập 1 và Tập 2.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


bai-tap-on-cuoi-nam.jsp


Giải bài tập lớp 9 sách mới các môn học
Tài liệu giáo viên