Sách bài tập Toán 7 Bài 2: Quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu

Sách bài tập Toán 7 Bài 2: Quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu

Bài 11 trang 38 sách bài tập Toán 7 Tập 2: Cho hình sau. So sánh các độ dài AB, AC, AD, AE.

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Lời giải:

+ Ta có BC < BD < BE.

Mà AC, AD, AE là các đường xiên tương ứng với các hình chiếu BC, BD, BE

Suy ra AC < AD < AE.

+ AB là đường vuông góc nên AB nhỏ nhất trong tất cả các đường xiên và đường vuông góc.

Do đó AB < AC < AD < AE.

Bài 12 trang 38 sách bài tập Toán 7 Tập 2: Cho hình bên. Chứng minh rằng MN < BC.

Lời giải:

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Nối BN.

+ Ta có: AM < AB

Mà NM, NB là các đường xiên ứng với hình chiếu AM, AB

⇒ NM < NB (1)

+ Lại có AN < AC.

Mà BN, BC là các đường xiên ứng với hình chiếu AN, AC

⇒ BN < BC (2)

Từ (1) và (2) suy ra: MN < BC

Bài 13 trang 38 sách bài tập Toán 7 Tập 2: Cho tam giác ABC cân tại A có AB = AC = 10cm, BC = 12cm. Vẽ cung tròn tâm A có bán kính 9cm. Cung đó có cắt đường thẳng BC hay không, có cắt cạnh BC hay không? Vì sao?

Lời giải:

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Kẻ AH ⊥ AB.

Xét hai tam giác vuông AHB và AHC, ta có:

∠AHB = ∠AHC = 90o

AB = AC (gt)

AH cạnh chung

Suy ra: ΔAHB = ΔAHC

(cạnh huyền - cạnh góc vuông)

Suy ra: HB = HC (hai cạnh tương ứng)

Ta có: HB = HC = BC/2 = 6 (cm)

Trong tam giác vuông AHB có ∠AHB = 90o

Áp dụng định lí Pi-ta-go, ta có:

AB2 = AH2 + HB2 ⇒ AH2 = AB2 – HB2 = 102 – 62 = 64

⇒ AH = 8 (cm)

Do bán kính cung tròn 9(cm) > 8(cm) nên cung tròn tâm A bán kính 9 cm cắt đường thẳng BC.

Gọi D là giao điểm của cung tròn tâm A bán kính 9 cm với BC.

Vì đường xiên AD < AC nên hình chiếu HD < HC.

Do đó D nằm giữa H và C.

Vậy cung tròn tâm A bán kính 9 cm cắt cạnh BC.

Bài 14 trang 38 sách bài tập Toán 7 Tập 2: Cho tam giác ABC, điểm D nằm giữa A và C (BD không vuông góc với AC). Gọi E và F là chân đường vuông góc kẻ từ A và C đến đường thẳng BD. So sánh AC với tổng AE + CF.

Lời giải:

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

+ AE là đường vuông góc hạ từ đỉnh A xuống đường thẳng BF

⇒ AE < AD. ( quan hệ đường vuông góc và đường xiên). (1)

+ CF là đường vuông góc hạ từ đỉnh C xuống đường thẳng BF

⇒ CF < CD ( quan hệ đường vuông góc và đường xiên). (2)

Từ (1) và (2) vế cộng vế ta được: AE + CF < AD + CD = AC.

Bài 15 trang 38 sách bài tập Toán 7 Tập 2: Cho tam giác ABC vuông tại A, M là trung điểm của AC. Gọi E và F là chân các đường vuông góc kẻ từ A và C đến đường thẳng BM. Chứng minh rằng AB < (BE + BF) / 2 .

Lời giải:

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Trong ΔABM, ta có ∠(BAM) = 90o

Suy ra: AB < BM (trong tam giác vuông cạnh huyền lớn nhất)

Mà BM = BE + EM = BF - MF

Suy ra: AB < BE + EM

AB < BF - FM

Suy ra:AB + AB < BE + ME + BF - MF (1)

Xét hai tam giác vuông AEM và CFM, ta có:

∠(AEM) = ∠(CFM) = 90o

AM = CM (gt)

∠(AME) = ∠(CMF) (đối đỉnh)

Suy ra: ΔAEM = ΔCFM (cạnh huyền - góc nhọn)

Suy ra: ME = MF (2)

Từ (1) và (2) suy ra: AB + AB < BE + BF

Suy ra: 2AB < BE + BF

Vậy AB < (BE + BF) / 2 .

Bài 16 trang 38 sách bài tập Toán 7 Tập 2: Cho tam giác ABC cân tại A, điểm D nằm giữa B và C. Chứng minh rằng độ dài AD nhỏ hơn cạnh bên của tam giác ABC.

Lời giải:

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Kẻ AH ⊥ BC.

* Trường hợp H trùng với D

Ta có AH < AC (đường vuông góc ngắn hơn đường xiên)

Suy ra: AD < AC

* Trường hợp H không trùng với D

Giả sử D nằm giữa H và C.

Ta có: HD < HC

Suy ra: AD < AC (hình chiếu nhỏ hơn thì có đường xiên nhỏ hơn)

Vậy AD nhỏ hơn cạnh bên của tam giác cân ABC.

Bài 17 trang 38 sách bài tập Toán 7 Tập 2: Cho hình sau trong đó AB > AC. Chứng minh rằng EB > EC.

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Lời giải:

Ta có: AB > AC (gt)

Suy ra: HB > HC (đường xiên lớn hơn có hình chiếu lớn hơn)

Suy ra: EB > EC (hình chiếu lớn hơn thì có đường xiên lớn hơn)

Bài 18 trang 39 sách bài tập Toán 7 Tập 2: Cho hình sau, chứng minh rằng: BD + CE < AB + AC

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Lời giải:

Trong ΔABD, ta có ∠(ADB) = 90o

Suy ra: BD < AB (đường vuông góc ngắn hơn đường xiên) (1)

Trong ΔAEC, ta có ∠(AEC) = 90o

Suy ra: CE < AC (cạnh huyền lớn hơn cạnh góc vuông) (2)

Cộng từng vế (1) và (2), ta có: BD + CE < AB + AC.

Bài 2.1 trang 39 sách bài tập Toán 7 Tập 2: Cho đường thẳng d và điểm A không thuộc d. Trong các khẳng định sau đây, khẳng định nào đúng, khẳng định nào sai?

(A) Có duy nhất một đường vuông góc kẻ từ điểm A đến đường thẳng d.

(B) Có duy nhất một đường kẻ xiên kẻ từ điểm A đến đường thẳng d.

(C) Có vô số đường vuông góc kẻ từ điểm A đến đường thẳng d.

(D) Có vô số đường kẻ xiên kẻ từ điểm A đến đường thẳng d.

Hãy vẽ hình minh họa cho các khẳng định đúng.

Lời giải:

Ta biết rằng có duy nhất một đường thẳng đi qua một điểm cho trước, vuông góc với một đường thẳng cho trước và có vô số đường thẳng đi qua một điểm cho trước cắt một đường cho trước. Bởi vì, có duy nhất một đường vuông góc kẻ từ điểm A đến đường thẳng d và có vô số đường xiên kẻ từ điểm A đến đường thẳng d.

(A) Đúng

(B) Sai

(C) Sai

(D) Đúng

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Trong hình AH là đường vuông góc duy nhất và AB, AC, AD, AE, AG là những đường xiên kẻ từ A đến d (có thể kẻ được vô số đường xiên như thế)

Bài 2.2 trang 39 sách bài tập Toán 7 Tập 2: Qua điểm A không thuộc đường thẳng d, kẻ đường vuông góc AH và các đường xiên AB, AC đến đường thẳng d (H, B, C đều thuộc d). Biết rằng HB < HC. Hãy chọn khẳng định đúng trong các khẳng định sau:

(A) AB > AC

(B) AB = AC

(C) AB < AC

(D) AH < AB

Lời giải:

Theo định lý so sánh giữa hình chiếu và hình xiên ta có:

HB < HC ⇒ AB < AC. Chọn (C)

Bài 2.3 trang 39 sách bài tập Toán 7 Tập 2: a) Hai tam giác ABC, A'B'C' vuông tại A và A' có AB = A'B', AC > A'C'. Không sử dụng định lý Pitago, chứng minh rằng BC > B'C'.

b) Hai tam giác ABC, A'B'C' vuông tại A và A' có AB = A'B', BC > B'C'.

Không sử dụng định lý Pytago, chứng minh rằng AC > A'C'

Lời giải:

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

a) Do AC > A'C' nên lấy được điểm C1 trên cạnh AC sao cho AC1=A′C′. Ta có tam giác vuông ABC1 bằng tam giác vuông A'B'C', suy ra B′C′=BC1. Mặt khác hai đường xiên BC và BC1 kẻ từ B đến đường thẳng AC lần lượt có hình chiếu trên AC là AC và AC1. Vì AC > AC1 nên BC > BC1. Suy ra BC > B'C'.

b) Dùng phản chứng:

- Giả sử AC < A'C'. Khi đó theo chứng minh câu a) ta có BC < B'C'. Điều này không đúng với giả thiết BC > B'C'.

Giả sử AC = A'C'. Khi đó ta có ΔABC = ΔA'B'C' (c.g.c). Suy ra BC = B'C'.

Điều này cũng không đúng với giả thiết BC > B'C'. Vậy ta phải có AC > A'C'.

(Nếu sử dụng định lý Pytago thì có thể giải bài toán sau)

Trong tam giác vuông ABC có BC 2= AB 2+ AC 2 (1)

Trong tam giác vuông A'B'C' có B'C' 2= A'B' 2+ A'C' 2 (2)

Theo giả thiết AB = A'B' nên từ (1) và (2) ta có:

- Nếu AC > A'C' thì AC 2 > A'C' 2, suy ra BC 2 > B'C' 2 hay BC > B'C'

- Nếu BC > B'C' thì BC 2 > B'C' 2, suy ra AC 2 > A'C' 2 hay AC > A'C'.

Bài 2.4 trang 39 sách bài tập Toán 7 Tập 2: Cho tam giác ABC vuông tại A. Gọi BD là đường phân giác của góc B (D ∈ AC). Chứng minh rằng BD < BC.

Lời giải:

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Do BD là tia phân giác của góc ABC nên tia BD ở giữa hai tia BA và BC, suy ra D ở giữa A và C, hay AD < AC.

Hai đường xiên BC, BD lần lượt có hình chiếu trên AC là AC và AD.

Mà AD < AC, suy ra BD < BC.

Bài 2.5 trang 40 sách bài tập Toán 7 Tập 2: Cho điểm A nằm ngoài đường thẳng xy

a) Tìm trên đường thẳng xy hai điểm M, N sao cho hai đường xiên AM và AN bằng nhau.

b) Lấy một điểm D trên đường thẳng xy. Chứng minh rằng:

- Nếu D ở giữa M và N thì AD < AM ;

- Nếu D không thuộc đoạn thẳng MN thì AD > AM.

Lời giải:

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

a) Gọi H là hình chiếu của A trên xy.

Để lấy hai điểm M, N thỏa mãn AM = AN ta vẽ 1 đường tròn tâm A, bán kính > AH cắt đường thẳng xy tại hai điểm M, N.

b) + Xét trường hợp D ở giữa M và N

- Nếu D ≡ H thì AD = AH, suy ra AD < AM (đường vuông góc ngắn hơn đường xiên)

- Nếu D ở giữa M và H thì HD < HM, do đó AD < AM (đường xiên có hình chiếu ngắn hơn thì ngắn hơn)

- Nếu D ở giữa H và N thì HD < HN, do đó AD < AN.

Theo a) ta có AM = AN nên AD < AM

Vậy khi D ở giữa M và N thì ta luôn có AD < AM

+ Xét trường hợp D không thuộc đoạn thẳng MN

⇒ HD > HM

⇒ AD > AM.

Bài 2.6 trang 40 sách bài tập Toán 7 Tập 2: Cho điểm P nằm ngoài đường thẳng d.

a) Hãy nêu cách vẽ đường xiên PQ, PR sao cho PQ = PR và ∠(QPR) = 60o

b) Trong hình dựng được ở câu a), cho PQ = 18cm. Tính độ dài hình chiếu của hai đường xiên PQ, PR trên d.

Lời giải:

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

a) + Phân tích bài toán

Giả sử PQ và PR là hai đường xiên kẻ từ P đến d sao cho PQ = PR và ∠(QPR) = 60o.

Gọi H là chân đường vuông góc kẻ từ P đến d.

Khi đó ΔPHQ = ΔPHR (cạnh huyền, cạnh góc vuông)

⇒ ∠(HPQ) = ∠(HPR) = 30o.

+ Từ đó suy ra cách vẽ hai đường xiên PQ và PR:

- Kẻ PH ⊥ d (H ∈ d)

- Kẻ các tia Px, Py tạo với PH 1 góc 30o (Py, Px thuộc hai nửa mp bờ là đường thẳng PH)

- Px, Py cắt d lần lượt tại Q và R.

Khi đó ΔPHQ = ΔPHR nên PQ = PR và ∠QPR = 60o.

b) + Hình chiếu của PQ và PR chính là HQ và HR.

+ ΔPQR có PQ = PR và ∠P = 60o

⇒ ΔPQR đều

⇒ QR = PQ = 18cm.

+ ΔPHQ = ΔPHR ( cạnh huyền- cạnh góc vuông) ⇒ QH = HR = 1/2.QR = 9cm.

Vậy độ dài hình chiếu của PQ và PR trên d đều bằng 9cm.

Xem thêm các bài giải sách bài tập Toán lớp 7 chọn lọc, chi tiết khác:

Lời giải bài tập lớp 7 sách mới:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 7

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và khóa học dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải sách bài tập Toán lớp 7 hay nhất, chi tiết của chúng tôi được biên soạn bám sát nội dung SBT Toán 7 Tập 1 và Tập 2.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 7 sách mới các môn học
Tài liệu giáo viên