Sách bài tập Toán 7 Bài 5: Tính chất tia phân giác của một góc
Sách bài tập Toán 7 Bài 5: Tính chất tia phân giác của một góc
Bài 40 trang 44 sách bài tập Toán 7 Tập 2: Hình sau là thước có khoảng cách giữa hai lề song song với nhau bằng h. Để vẽ tia phân giác của góc xOy, ta áp một lề của thước vào cạnh Ox rồi kẻ đường thẳng a theo lề kia, sau đó làm tương tự với cạnh Oy ta kẻ được đường thẳng b. Vì sao giao điểm M của a và b nằm trên tia phân giác của góc xOy?
Lời giải:
Kẻ MH ⊥ Ox, MK ⊥ Oy.
Khi đó:
MH là chiều rộng của thước hai lề
MK là chiều rộng của thước hai lề
Mà chiều rộng của thước đó bằng nhau và bằng h nên ta có:
MH = MK = h
Điểm M nằm trong góc xOy và cách đều hai cạnh của góc nên M thuộc tia phân giác của góc xOy.
Bài 41 trang 44 sách bài tập Toán 7 Tập 2: Cho tam giác ABC. Chứng minh rằng hai đường phân giác của hai góc ngoài tại B và C và đường phân giác trong của góc A cùng đi qua một điểm.
Lời giải:
Gọi K là giao điểm của hai tia phân giác của góc ngoài tại đỉnh B và góc ngoài tại đỉnh C.
Kẻ KE ⊥ BC, KF ⊥ AC, KD ⊥ AB
Vì K nằm trên phân giác của ∠(CBD) nên:
KD = KE (tính chất tia phân giác) (1)
Vì K nằm trên tia phân giác của ∠(BCF) nên:
KE = KF (tính chất tia phân giác) (2)
Từ (1) và (2) suy ra: KD = KF
Điểm K nằm trong ∠(BAC) cách đều 2 cạnh AB và AC nên K nằm trên tia phân giác của ∠(BAC) .
Bài 42 trang 44 sách bài tập Toán 7 Tập 2: Cho tam giác nhọn ABC. Tìm điểm D thuộc trung tuyến AM sao cho D cách đều hai cạnh của góc B.
Lời giải:
Vì D cách đều hai cạnh của góc B nên D nằm trên đường phân giác của ∠(ABC)
Đồng thời D nằm trên đường trung tuyến AM.
Vậy D là giao điểm của đường phân giác của ∠(ABC) và đường trung tuyến AM.
Bài 43 trang 45 sách bài tập Toán 7 Tập 2: Cho hai đường thẳng AB và CD cắt nhau tại O. Tìm tập hợp các điểm cách đều hai đường thẳng AB và CD.
Lời giải:
* Xét điểm M nằm trong góc AOD
Kẻ MH ⊥ OA, MK ⊥ OD
Xét hai tam giác MHO và MKO:
∠(MHO) = ∠(MKO) = 90o
MH = MK
OM cạnh huyền chung
Suy ra: ΔMHO = ΔMKO
(cạnh huyền - cạnh góc vuông)
Suy ra: ∠(MOH) = ∠(MOK)(2 góc tương ứng)
Hay OM là tia phân giác của ∠(AOD).
* Ngược lại, M nằm trên tia phân giác của ∠(AOD)
Xét hai tam giác vuông MHO và MKO, ta có:
∠(MHO) = ∠(MKO)= 90o
∠(MOH) = ∠(MOK)
OM cạnh huyền chung
Suy ra: ΔMHO = ΔMKO (cạnh huyền - góc nhọn)
Suy ra: MH = MK (2 cạnh tương ứng)
Vậy tập hợp các điểm M cách đều OA và OD là tia phân giác Ox của góc AOD.
Tương tự M nằm trong các góc AOC, DOB, BOC thì tập hợp các điểm M là tia phân giác Oy, Oy’, Ox’.
Vậy tập hợp các điểm M cách đều hai đường thẳng AB và CD cắt nhau tại O là hai đường thẳng xx’ và yy’ là đường phân giác của các góc tạo bởi hai đường thẳng AB và CD.
Bài 44 trang 45 sách bài tập Toán 7 Tập 2: Để vẽ đường phân giác của góc xOy có đỉnh O nằm ngoài tờ giấy, bạn Minh đã vẽ các điểm A, B như trên hình sau. Đường thẳng AB có là đường phân giác của góc xOy hay không? Vì sao?
Lời giải:
Ta có: AD = AE nên A nằm trên tia phân giác của góc xOy
BM = BN nên B nằm trên tia phân giác của góc xOy
Mà A ≠ B nên đường thẳng AB là đường phân giác của góc xOy.
Bài 5.1 trang 45 sách bài tập Toán 7 Tập 2: Cho góc xOy bằng 60°, điểm M nằm trong góc đó và cùng cách Ox, Oy một khoảng bằng 2cm. Khi đó đoạn thẳng OM bằng
(A) 2cm;
(B) 3cm;
(C) 4cm;
(D) 5cm
Hãy chọn phương án đúng.
Lời giải:
M cách đều Ox và Oy
⇒ M thuộc tia phân giác của góc xOy.
⇒ ∠MOx = 30o
∆MHO vuông có cạnh HM đối diện với góc HOM
*) Áp dụng bài 6.5 ( sách bài tập – tập 1): Nếu tam giác ABC vuông tại A và ∠B = 30o
thì AC= BC/2
⇒ HM = 1/2.OM
⇒ OM = 2.HM = 2.2 = 4 (cm)
Chọn đáp án: C
Bài 5.2 trang 45 sách bài tập Toán 7 Tập 2: Cho điểm A nằm trong góc vuông xOy. Gọi M, N lần lượt là chân đường vuông góc kẻ từ A đến Ox, Oy. Biết AM = AN = 3cm. Khi đó
(A) OM = ON > 3cm
(B) OM = ON < 3cm
(C) OM = ON = 3cm
(D) OM ≠ ON
Lời giải:
+) Vì A nằm trong góc xOy và cách đều Ox, Oy (AM = AN = 3cm) nên điểm A nằm trên tia phân giác của góc xOy.
Suy ra: OA là tia phân giác của góc xOy.
Suy ra:
+) Tam giác AOM vuông tại M có góc nên
Suy ra; tam giác OAM vuông cân tại M nên OM = MA = 3cm.
+) Chứng minh tương tự ta có tam giác OAN vuông cân tại N nên :
ON = NA = 3cm
Vậy OM = ON = 3cm
Chọn C.
Bài 5.3 trang 45 sách bài tập Toán 7 Tập 2: Cho góc đỉnh O khác góc bẹt
a) Từ một điểm M trên tia phân giác của góc O, kẻ các đường vuông góc MA, MB đến hai cạnh của góc này. Chứng minh rằng AB ⊥ OM.
b) Trên hai cạnh của góc O lấy hai điểm C và D, sao cho OC = OD. Hai đường thẳng lần lượt vuông góc với hai cạnh của góc O tại C và D cắt nhau ở E. Chứng minh rằng OE là tia phân giác của góc O.
Lời giải:
a)
Gọi H là giao điểm của AB và OM.
Xét ΔAOM (vuông tại A) và ΔBOM (vuông tại B) có:
OM chung
∠MOA = ∠MOB ( vì OM là tia phân giác của góc xOy)
⇒ ΔAOM = ΔBOM (cạnh huyền – góc nhọn)
⇒ OA = OB.
+) Xét ΔOAH và ΔBOH có:
OA = OB ( chứng minh trên )
OH chung
∠AOH = ∠BOH ( vì OH là tia phân giác của góc xOy)
⇒ ΔOAH = ΔOBH (c.g.c)
⇒ ∠OHA = ∠OHB. Mà ∠OHA + ∠OHB = 180o ( hai góc kề bù)
⇒ ∠OHA = ∠OHB = 90o
Vậy AB ⊥ OM.
b)
Xét ΔODE và ΔOCE vuông tại D và C có:
OE chung
OD = OC (gt)
⇒ ΔODE = ΔOCE ( cạnh huyền- cạnh góc vuông)
⇒ ∠DOE = ∠COE
⇒ OE là phân giác của góc O
Bài 5.4 trang 45 sách bài tập Toán 7 Tập 2: Cho tam giác cân ABC, AB = AC. Trên các cạnh AB, AC lần lượt lấy hai điểm P, Q sao cho AP = AQ. Hai đoạn thẳng CP, BQ cắt nhau tại O. Chứng minh rằng:
a) Tam giác OBC là tam giác cân.
b) Điểm O cách đều hai cạnh AB, AC.
c) AO đi qua trung điểm của đoạn thẳng BC và vuông góc với nó.
Lời giải:
a) Ta sẽ chứng minh ΔOBC có hai góc OBC và OCB bằng nhau
ΔABQ và ΔACP có: AB = AC, AQ = AP, ∠A chung
⇒ ΔABQ = ΔACP (c.g.c)
⇒ ∠ABQ = ∠ACP.
Mà ∠ABC = ∠ACB (Vì tam giác ABC cân tại A)
⇒ ∠ABC - ∠ABQ = ∠ACB - ∠ACP hay ∠OBC = ∠OCB
⇒ ΔOBC cân tại O.
b) ΔOBC cân tại O ⇒ OB = OC.
ΔAOB và ΔAOC có: AO chung, AB = AC (giả thiết), OB = OC (cmt)
⇒ ΔAOB = ΔAOC (c.c.c).
⇒ ∠BAO = ∠CAO
⇒ AO là tia phân giác của góc BAC
⇒ O cách đều hai cạnh AB, AC.
c) Gọi giao điểm AO với BC là H.
ΔAHB và ΔAHC có:
cạnh AH chung,
AB = AC
∠(BAH) = ∠(CAH) (theo b).
⇒ ΔAHB = ΔAHC (c.g.c)
⇒ HB = HC và ∠(AHB) = ∠(AHC)
Lại có: ∠(AHB) + ∠(AHC) = 180º ( hai góc kề bù)
Suy ra: ∠(AHB) = ∠(AHC) = 90º
tức là AO ⊥ BC và AO đi qua trung điểm của BC.
Bài 5.5 trang 46 sách bài tập Toán 7 Tập 2: Cho hai đường thẳng song song a, b và một cát tuyến c. Hai tia phân giác của một cặp góc trong cùng phía cắt nhau tại I. Chứng minh rằng I cách đều ba đường thẳng a, b, c.
Lời giải:
Gọi A, B, C lần lượt là chân đường vuông góc kẻ từ I đến a, b, c. Xét hai góc trong cùng phía E và F. Do I thuộc tia phân giác của góc E nên IA = IC. (1)
Do I thuộc tia phân giác của góc F nên IC = IB. (2)
Từ (1) và (2) suy ra IA = IB = IC, tức là I cách đều ba đường thẳng a, b, c.
Xem thêm các bài giải sách bài tập Toán lớp 7 chọn lọc, chi tiết khác:
- Bài 6: Tính chất ba đường phân giác của tam giác
- Bài 7: Tính chất đường trung trực của một đoạn thẳng
- Bài 8: Tính chất ba đường trung trực của tam giác
- Bài 9: Tính chất ba đường cao của tam giác
- Ôn tập chương 3 - Phần Hình học
Lời giải bài tập lớp 7 sách mới:
- Giải bài tập Lớp 7 Kết nối tri thức
- Giải bài tập Lớp 7 Chân trời sáng tạo
- Giải bài tập Lớp 7 Cánh diều
Tủ sách VIETJACK shopee lớp 6-8 cho phụ huynh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Giải sách bài tập Toán lớp 7 hay nhất, chi tiết của chúng tôi được biên soạn bám sát nội dung SBT Toán 7 Tập 1 và Tập 2.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 7 Global Success
- Giải Tiếng Anh 7 Friends plus
- Giải sgk Tiếng Anh 7 Smart World
- Giải Tiếng Anh 7 Explore English
- Lớp 7 - Kết nối tri thức
- Soạn văn 7 (hay nhất) - KNTT
- Soạn văn 7 (ngắn nhất) - KNTT
- Giải sgk Toán 7 - KNTT
- Giải sgk Khoa học tự nhiên 7 - KNTT
- Giải sgk Lịch Sử 7 - KNTT
- Giải sgk Địa Lí 7 - KNTT
- Giải sgk Giáo dục công dân 7 - KNTT
- Giải sgk Tin học 7 - KNTT
- Giải sgk Công nghệ 7 - KNTT
- Giải sgk Hoạt động trải nghiệm 7 - KNTT
- Giải sgk Âm nhạc 7 - KNTT
- Lớp 7 - Chân trời sáng tạo
- Soạn văn 7 (hay nhất) - CTST
- Soạn văn 7 (ngắn nhất) - CTST
- Giải sgk Toán 7 - CTST
- Giải sgk Khoa học tự nhiên 7 - CTST
- Giải sgk Lịch Sử 7 - CTST
- Giải sgk Địa Lí 7 - CTST
- Giải sgk Giáo dục công dân 7 - CTST
- Giải sgk Công nghệ 7 - CTST
- Giải sgk Tin học 7 - CTST
- Giải sgk Hoạt động trải nghiệm 7 - CTST
- Giải sgk Âm nhạc 7 - CTST
- Lớp 7 - Cánh diều
- Soạn văn 7 (hay nhất) - Cánh diều
- Soạn văn 7 (ngắn nhất) - Cánh diều
- Giải sgk Toán 7 - Cánh diều
- Giải sgk Khoa học tự nhiên 7 - Cánh diều
- Giải sgk Lịch Sử 7 - Cánh diều
- Giải sgk Địa Lí 7 - Cánh diều
- Giải sgk Giáo dục công dân 7 - Cánh diều
- Giải sgk Công nghệ 7 - Cánh diều
- Giải sgk Tin học 7 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 7 - Cánh diều
- Giải sgk Âm nhạc 7 - Cánh diều