Bài toán thực tế lớp 10 Hàm số bậc hai
Bài toán thực tế lớp 10 Hàm số bậc hai có lời giải chương trình mới dùng chung cho ba sách Kết nối tri thức, Chân trời sáng tạo, Cánh diều với bài tập đa dạng giúp Giáo viên có thêm tài liệu giảng dạy các dạng toán thực tế lớp 10.
Bài toán thực tế lớp 10 Hàm số bậc hai
Chỉ từ 300k mua trọn bộ Chuyên đề, các dạng Toán thực tế lớp 10 chương trình mới bản word trình bày đẹp mắt, chỉnh sửa dễ dàng:
- B1: gửi phí vào tk:
1053587071
- NGUYEN VAN DOAN - Ngân hàng Vietcombank (QR) - B2: Nhắn tin tới Zalo VietJack Official - nhấn vào đây để thông báo và nhận đề thi
A.KIẾN THỨC CƠ BẢN CẦN NẮM
1. Hàm số bậc hai
Hàm số bậc hai là hàm số được cho bằng biểu thức có dạng , trong đó a, b,c là những hằng số và a khác 0 . Tập xác định của hàm số là .
2. Đồ thị hàm số bậc hai
Đồ thị hàm số bậc hai là một đường parabol có đỉnh là điểm với toạ độ và trục đối xứng là đường thẳng . Nhận xét: Cho hàm số , ta có: .
B. BÀI TẬP VẬN DỤNG
Câu 1: Tại một buổi khai trương, người ta làm một cổng chào có đường viền trong của mặt cắt là đường parabol. Người ta đo khoảng cách giữa hai chân cổng là 4,5m. Từ một điểm trên thân cổng người ta đo được khoảng cách tới mặt đât (điêm H) là 1,8m và khoảng cách từ điểm H tới chân cồng gần nhất là 1m. Hãy tính chiều cao của cồng chào đó (tính theo đường viền trong) theo đơn vị mét và làm tròn kết quả đến hàng phần mười.
Giải
Chọn hệ trục tọ̣ độ sao cho gốc toạ độ O trùng một chân của cổng, trục hoành nằm trên đường nối hai chân cổng (đơn vị trên các trục tính theo mét) (Hinh 10). Gọi hàm số bậc hai có đồ thị chứa đường viền trong của cổng chào trên là .
Từ giả thiết bài toán ta có đồ thị hàm số đi qua các điểm
Thay toạ độ các điểm trên vào hàm số, ta được c = 0 và hệ phương trình: Suy ra ta có hàm sô: . Từ đó, đỉnh của đồ thị hàm số trên có tung độ là . Vậy chiều cao của cổng là khoảng 2,6 m.
Câu 2: Khi du lịch đến thành phố St. Louis (Mỹ), ta sẽ thấy một cái cổng lớn có hình parabol hướng bề lõm xuống dưới, đó là cổng Arch. Giả sử ta lập một hệ toạ độ Oxy sao cho một chân cổng đi qua gốc O như Hình 16 (x và y tính bằng mét), chân kia của cổng ở vị trí có tọa độ (162; 0). Biết một điểm M trên cổng có toạ độ là (10; 43).
Tính chiều cao của cổng (tính từ điểm cao nhất trên cổng xuống mặt đất), làm tròn kết quả đến hàng đơn vị.
Lời giải
Từ đồ thị ta thấy các điểm thuộc đồ thị là:
.
Gọi hàm số là
Thay tọa độ các điểm A, B, C vào ta được hệ:
Từ đó ta có
Hoành độ đỉnh của đồ thị là:
Khi đó:
Vậy chiều cao của cổng là 186m.
Câu 3: Bố bạn Lan gửi 10 triệu đồng vào một ngân hàng với lãi suất x%/ tháng. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập với vốn ban đầu để tính lãi cho tháng tiếp theo. Tính số tiền cả vốn và lãi mà bố bạn Lan có được sau khi gửi tiết kiệm 2 tháng?
Câu 4: Trong một công trình, người ta xây dựng một cổng ra vào hình parabol (minh hoạ ở Hình 13) sao cho khoảng cách giữa hai chân cổng BC là 9m. Từ một điểm M trên thân cổng người ta đo được khoảng cách tới mặt đất là MK = 1,6m và khoảng cách từ K tới chân cổng gần nhất là BK = 0,5m. Tính chiều cao của cổng theo đơn vị mét (làm tròn kết quả đến hàng phần mười).
Câu 5: Hai bạn An và Bình trao đổi với nhau:
An nói: Tớ đọc ở một tài liệu thấy nói rằng cổng Trường Đại học Bách khoa Hà Nội có dạng một parabol, khoảng cách giữa hai chân cổng là 8m và chiều cao của cổng tính từ một điểm trên mặt đất cách chân cổng là 0,5m là 2,93m. Từ đó tớ tính ra được chiều cao của cổng parabol đó là 12m .
Sau một hồi suy nghĩ, Bình nói: Nếu dữ kiện như bạn nói, thì chiều cao của cổng parabol mà bạn tính ra ở trên là không chính xác.
Dựa vào thông tin mà An đọc được, em hãy tính chiều cao của cổng Trường Đại học Bách Khoa Hà Nội để xem kết quả bạn An tính được có chính xác không nhé.
Câu 6: Bác Hùng dùng 40m lưới thép gai rào thành một mảnh vườn hình chữ nhật để trồng rau.
a. Tính diện tích mảnh vườn hình chữ nhật rào được theo chiều rộng x (mét) của nó.
b. Tìm kích thước của mảnh vườn hình chữ nhật có diện tích lớn nhất mà bác Hùng có thể rào được.
Câu 7: Quỹ đạo của một vật được ném lên từ gốc O (được chọn là điểm ném) trong mặt phẳng tọa độ Oxy là một parabol có phương trình , trong đó x (mét) là khoảng cách theo phương ngang trên mặt đất từ vị trí của vật đến gốc O, y (mét) là độ cao của vật so với mặt đất
a. Tìm độ cao cực đại của vật trong quá trình bay.
b. Tính khoảng cách từ điểm chạm đất sau khi bay của vật đến gốc O . Khoảng cách này gọi là tầm xa của quỹ đạo.
................................
................................
................................
Xem thêm Chuyên đề Toán thực tế lớp 10 chương trình mới có lời giải hay khác:
Bài toán thực tế lớp 10 Hai phương trình quy về phương trình bậc hai
Bài toán thực tế lớp 10 Các số đặc trưng đo xu thế trung tâm
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Lớp 12 Kết nối tri thức
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT
- Lớp 12 Chân trời sáng tạo
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST
- Lớp 12 Cánh diều
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều