Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác (Lý thuyết Toán lớp 7) - Kết nối tri thức

Với tóm tắt lý thuyết Toán 7 Bài 13: Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh lớp 7 nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 7.

Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác (Lý thuyết Toán lớp 7) - Kết nối tri thức

Lý thuyết Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác

1. Hai tam giác bằng nhau

Quảng cáo

• Hai tam giác ABC và A'B'C'bằng nhau nếu chúng có các cạnh tương ứng bằng nhau và các góc tương ứng bằng nhau, nghĩa là:

AB=A'B'; AC=A'C'; BC=B'C' và A^=A'^; B^=B'^; C^=C'^.

Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác (Lý thuyết Toán lớp 7) | Kết nối tri thức (ảnh 1)

• Khi kí hiệu hai tam giác bằng nhau thì thứ tự các đỉnh tương ứng phải được viết theo cùng 1 thứ tự.

Ở đây hai đỉnh A và A' (B và B', C và C') là hai đỉnh tương ứng;

Hai góc A và A' (B và B', C và C') là hai góc tương ứng;

Hai cạnh AB và A'B' (AC và A'C', BC và B'C') là hai cạnh tương ứng.

Khi đó ta kí hiệu: ΔABC=ΔA'B'C'

Ví dụ:

+ Cho hai tam giác trong hình dưới đây, ta thấy:

A^=H^=50°; B^=D^=23°; C^=E^=107°(các góc tương ứng)

AB = DH = 5 cm; BC = DE = 4cm; AC = EH = 2cm (các cạnh tương ứng)

Quảng cáo

Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác (Lý thuyết Toán lớp 7) | Kết nối tri thức (ảnh 2)

Do đó hai tam giác trên bằng nhau. Kí hiệu theo thứ tự tương ứng là: ΔABC=ΔHDE

2. Trường hợp bằng nhau thứ nhất của tam giác: Cạnh – cạnh – cạnh (c.c.c)

• Cách vẽ tam giác khi biết số đo ba cạnh.

Chẳng hạn: Vẽ tam giác ABC biết AB = 2 cm; AC = 3 cm; BC = 4 cm.

+ Dùng thước kẻ có vạch chia vẽ đoạn BC = 4 cm (hoặc có thể vẽ AB hoặc AC trước)

+ Dùng compa mở khẩu độ 2 cm, tâm tại điểm B, vẽ 1 cung tròn; mở compa khẩu độ 3 cm, tâm tại điểm C, vẽ một cung tròn. Giao điểm của 2 cung tròn là điểm A.

+ Vẽ các đoạn thẳng AB; AC ta được tam giác ABC.

Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác (Lý thuyết Toán lớp 7) | Kết nối tri thức (ảnh 3)

• Trường hợp bằng nhau cạnh - cạnh - cạnh (c.c.c)

Quảng cáo

Nếu ba cạnh của tam giác này bằng ba cạnh của tam giác kia thì hai tam giác đó bằng nhau.

Ví dụ:

+ Cho tam giác ABC và tam giác A'B'C' trong hình dưới đây:

Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác (Lý thuyết Toán lớp 7) | Kết nối tri thức (ảnh 4)

Ta có: AB = A'B'; AC = A'C'; BC = B'C'

Khi đó: ΔABC=ΔA'B'C'

Chú ý:

• Cách vẽ tia phân giác của một góc dựa và thước kẻ và compa.

Vẽ tia phân giác của góc xOy ta làm như sau:

Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác (Lý thuyết Toán lớp 7) | Kết nối tri thức (ảnh 5)

Quảng cáo

1) Vẽ đường tròn tâm O cắt Ox, Oy lần lượt tại A và B.

2) Vẽ đường tròn tâm A bán kính AO và đường tròn tâm B bán kính BO. Hai đường tròn này cắt nhau tại điểm M khác điểm O.

3) Vẽ tia Oz đi qua M. Tia Oz là tia phân giác của góc xOy.

Bài tập Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác

Bài 1. Cho tam giác ABC và DEH trong hình dưới đây.

Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác (Lý thuyết Toán lớp 7) | Kết nối tri thức (ảnh 6)

Xác định trong các khẳng định sau, khẳng định nào đúng?

a) ΔABC=ΔDEH;

b) ΔABC=ΔHDE;

c) ΔBAC=ΔDEH;

d) ΔBCA=ΔDEH.

Hướng dẫn giải

Hai tam giác ABC và HDE có:

AB = HD

BC = DE

AC = HE

Vậy ΔABC=ΔHDE(c.c.c)

Khi đó A và H (B và D; C và E) là hai đỉnh tương ứng

a) ΔABC=ΔDEH

Các đỉnh tương ứng không viết cùng thứ tự nên khẳng định sai.

b) ΔABC=ΔHDE

Các đỉnh tương ứng được viết cùng thứ tự nên khẳng định đúng.

c) ΔBAC=ΔDEH

Đỉnh A và H; đỉnh C và E không được viết cùng thứ tự nên khẳng định sai.

d) ΔBCA=ΔDEH

Các đỉnh tương ứng được viết cùng thứ tự nên khẳng định đúng.

Bài 2. Cho hình vẽ dưới đây, biết AD = BC, AC = BD. Chứng minh rằng ΔADB=ΔBCA.

Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác (Lý thuyết Toán lớp 7) | Kết nối tri thức (ảnh 7)

Hướng dẫn giải

Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác (Lý thuyết Toán lớp 7) | Kết nối tri thức (ảnh 8)

Hai tam giác ADB và BCA có:

AD = BC (theo giả thiết)

BD = AC (theo giả thiết)

AB là cạnh chung

Vậy ΔADB=ΔBCA(c.c.c)

Bài 3. Cho hình vẽ dưới đây, biết JG = JL, GK = LK, KJL^=60°, JGK^=90°.

a) Chứng minh rằng ΔJGK=ΔJLK

b) Tính góc GKL.

Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác (Lý thuyết Toán lớp 7) | Kết nối tri thức (ảnh 9)

Hướng dẫn giải

Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác (Lý thuyết Toán lớp 7) | Kết nối tri thức (ảnh 10)

a) Xét hai tam giác JGK và JLK có:

JG = JL (theo giả thiết)

GK = LK (theo giả thiết)

JK là cạnh chung

Vậy ΔJGK=ΔJLK(c.c.c)

b) Vì ΔJGK=ΔJLK(theo câu a)

KJG^=KJL^(hai góc tương ứng)

KJG^=60°

Xét tam giác JGK có: KJG^+JGK^+GKJ^=180°(tổng 3 góc trong tam giác)

60°+90°+GKJ^=180°

GKJ^=180°60°90°=30°

ΔJGK=ΔJLK(theo câu a)

GKJ^=LKJ^(hai góc tương ứng)

GKL^=GKJ^+LKJ^=GKJ^+GKJ^=2GKJ^=230°=60°

Vậy GKL^=60°

Học tốt Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác

Các bài học để học tốt Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác Toán lớp 7 hay khác:

Xem thêm tóm tắt lý thuyết Toán lớp 7 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 7 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 7

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và khóa học dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải bài tập Toán lớp 7 của chúng tôi được biên soạn bám sát sgk Toán 7 Tập 1 & Tập 2 bộ sách Kết nối tri thức với cuộc sống (NXB Giáo dục).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 7 Kết nối tri thức khác
Tài liệu giáo viên