Các trường hợp bằng nhau của tam giác vuông (Lý thuyết Toán lớp 7) - Kết nối tri thức
Với tóm tắt lý thuyết Toán 7 Bài 15: Các trường hợp bằng nhau của tam giác vuông sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh lớp 7 nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 7.
Các trường hợp bằng nhau của tam giác vuông (Lý thuyết Toán lớp 7) - Kết nối tri thức
Lý thuyết Các trường hợp bằng nhau của tam giác vuông
1. Ba trường hợp bằng nhau của tam giác vuông
• Nếu hai cạnh góc vuông của tam giác vuông này lần lượt bằng hai cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.
Ví dụ: Trong hình dưới đây, vuông tại A và vuông tại A'có:
AB = A'B'; AC = A'C'. Khi đó = (hai cạnh góc vuông).
• Nếu một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông này bằng một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.
Ví dụ: Trong hình dưới đây, vuông tại A và vuông tại A'có:
AC = A'C'; . Khi đó = (cạnh góc vuông – góc nhọn kề).
• Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.
Ví dụ: Trong hình dưới đây, vuông tại A và vuông tại <A'có:
BC = B'C'; . Khi đó = (cạnh huyền – góc nhọn).
2. Trường hợp bằng nhau đặc biệt của tam giác vuông
• Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này bằng cạnh huyền và một cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.
Ví dụ: Trong hình dưới đây, vuông tại A và vuông tại A'có:
BC = B'C'; AC = A'C'. Khi đó = <(cạnh huyền – cạnh góc vuông).
Bài tập Các trường hợp bằng nhau của tam giác vuông
Bài 1. Mỗi hình sau có các cặp tam giác vuông nào bằng nhau? Vì sao?
Hướng dẫn giải
a) Hai tam giác DEG (vuông tại G) và tam giác DFG (vuông tại G) có:
DG là cạnh chung
Nên (cạnh góc vuông – góc nhọn kề).
b) Hai tam giác HIK (vuông tại I) và tam giác KJH (vuông tại J) có:
HK là cạnh chung
HI = KJ
Nên (cạnh huyền – cạnh góc vuông).
c) Hai tam giác MLO (vuông tại L) và tam giác ONM (vuông tại N) có:
MO là cạnh chung
Nên (cạnh huyền –góc nhọn).
d) Hai tam giác SRP (vuông tại R) và tam giác QPR (vuông tại P) có:
RP là cạnh chung
SR = QP
Nên (hai cạnh góc vuông).
Bài 2. Cho hình chữ nhật ABCD, M là trung điểm của cạnh CD. Chứng minh rằng .
Hướng dẫn giải
ABCD là hình chữ nhật ⇒ AD = BC và
Xét tam giác ADM (vuông tại D) và tam giác BCM (vuông tại C) có:
AD = BC (chứng minh trên)
DM = CM (theo giả thiết)
⇒ (hai cạnh góc vuông)
Bài 3. Cho hình vẽ dưới đây, biết AB vuông góc với BC, AD vuông góc với CD và cạnh AB = AD. Chứng minh rằng:
a) ;
b) AC vuông góc với BD.
Hướng dẫn giải
a) Xét tam giác BAC (vuông tại B) và tam giác DAC (vuông tại D) có:
AC là cạnh chung
AB = AD (theo giả thiết)
⇒ (cạnh huyền – cạnh góc vuông)
b) Gọi H là giao điểm của AC và BD.
Vì (theo câu a) ⇒ (hai góc tương ứng) hay
Xét tam giác BAH và tam giác DAH có:
AB = AD (theo giả thiết)
(chứng minh trên)
AH là cạnh chung
⇒ (c.g.c)
⇒ (hai góc tương ứng)
Mà (hai góc kề bù)
Nên
⇒AC ⊥ BD (đpcm).
Học tốt Các trường hợp bằng nhau của tam giác vuông
Các bài học để học tốt Các trường hợp bằng nhau của tam giác vuông Toán lớp 7 hay khác:
Giải sgk Toán 7 Bài 15: Các trường hợp bằng nhau của tam giác vuông
Giải sbt Toán 7 Bài 15: Các trường hợp bằng nhau của tam giác vuông
Xem thêm tóm tắt lý thuyết Toán lớp 7 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 7 hay khác:
- Giải sgk Toán 7 Kết nối tri thức
- Giải SBT Toán 7 Kết nối tri thức
- Giải lớp 7 Kết nối tri thức (các môn học)
- Giải lớp 7 Chân trời sáng tạo (các môn học)
- Giải lớp 7 Cánh diều (các môn học)
Tủ sách VIETJACK shopee lớp 6-8 cho phụ huynh và giáo viên (cả 3 bộ sách):
Săn shopee giá ưu đãi :
- Đồ dùng học tập giá rẻ
- Sữa dưỡng thể Vaseline chỉ hơn 40k/chai
- Tsubaki 199k/3 chai
- L'Oreal mua 1 tặng 3
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Giải bài tập Toán lớp 7 của chúng tôi được biên soạn bám sát sgk Toán 7 Tập 1 & Tập 2 bộ sách Kết nối tri thức với cuộc sống (NXB Giáo dục).
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 7 (hay nhất) - KNTT
- Soạn văn 7 (ngắn nhất) - KNTT
- Giải sgk Toán 7 - KNTT
- Giải Tiếng Anh 7 Global Success
- Giải Tiếng Anh 7 Friends plus
- Giải sgk Tiếng Anh 7 Smart World
- Giải Tiếng Anh 7 Explore English
- Giải sgk Khoa học tự nhiên 7 - KNTT
- Giải sgk Lịch Sử 7 - KNTT
- Giải sgk Địa Lí 7 - KNTT
- Giải sgk Giáo dục công dân 7 - KNTT
- Giải sgk Tin học 7 - KNTT
- Giải sgk Công nghệ 7 - KNTT
- Giải sgk Hoạt động trải nghiệm 7 - KNTT
- Giải sgk Âm nhạc 7 - KNTT