Lý thuyết Toán 7 Kết nối tri thức Bài 15: Các trường hợp bằng nhau của tam giác vuông
Với tóm tắt lý thuyết Toán 7 Bài 15: Các trường hợp bằng nhau của tam giác vuông sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 7.
Lý thuyết Toán 7 Kết nối tri thức Bài 15: Các trường hợp bằng nhau của tam giác vuông
Lý thuyết Các trường hợp bằng nhau của tam giác vuông
1. Ba trường hợp bằng nhau của tam giác vuông
• Nếu hai cạnh góc vuông của tam giác vuông này lần lượt bằng hai cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.
Ví dụ: Trong hình dưới đây, vuông tại A và vuông tại A'có:
AB = A'B'; AC = A'C'. Khi đó = (hai cạnh góc vuông).
• Nếu một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông này bằng một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.
Ví dụ: Trong hình dưới đây, vuông tại A và vuông tại A'có:
AC = A'C'; . Khi đó = (cạnh góc vuông – góc nhọn kề).
• Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.
Ví dụ: Trong hình dưới đây, vuông tại A và vuông tại <A'có:
BC = B'C'; . Khi đó = (cạnh huyền – góc nhọn).
2. Trường hợp bằng nhau đặc biệt của tam giác vuông
• Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này bằng cạnh huyền và một cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.
Ví dụ: Trong hình dưới đây, vuông tại A và vuông tại A'có:
BC = B'C'; AC = A'C'. Khi đó = <(cạnh huyền – cạnh góc vuông).
Bài tập Các trường hợp bằng nhau của tam giác vuông
Bài 1. Mỗi hình sau có các cặp tam giác vuông nào bằng nhau? Vì sao?
Hướng dẫn giải
a) Hai tam giác DEG (vuông tại G) và tam giác DFG (vuông tại G) có:
DG là cạnh chung
Nên (cạnh góc vuông – góc nhọn kề).
b) Hai tam giác HIK (vuông tại I) và tam giác KJH (vuông tại J) có:
HK là cạnh chung
HI = KJ
Nên (cạnh huyền – cạnh góc vuông).
c) Hai tam giác MLO (vuông tại L) và tam giác ONM (vuông tại N) có:
MO là cạnh chung
Nên (cạnh huyền –góc nhọn).
d) Hai tam giác SRP (vuông tại R) và tam giác QPR (vuông tại P) có:
RP là cạnh chung
SR = QP
Nên (hai cạnh góc vuông).
Bài 2. Cho hình chữ nhật ABCD, M là trung điểm của cạnh CD. Chứng minh rằng .
Hướng dẫn giải
ABCD là hình chữ nhật ⇒ AD = BC và
Xét tam giác ADM (vuông tại D) và tam giác BCM (vuông tại C) có:
AD = BC (chứng minh trên)
DM = CM (theo giả thiết)
⇒ (hai cạnh góc vuông)
Bài 3. Cho hình vẽ dưới đây, biết AB vuông góc với BC, AD vuông góc với CD và cạnh AB = AD. Chứng minh rằng:
a) ;
b) AC vuông góc với BD.
Hướng dẫn giải
a) Xét tam giác BAC (vuông tại B) và tam giác DAC (vuông tại D) có:
AC là cạnh chung
AB = AD (theo giả thiết)
⇒ (cạnh huyền – cạnh góc vuông)
b) Gọi H là giao điểm của AC và BD.
Vì (theo câu a) ⇒ (hai góc tương ứng) hay
Xét tam giác BAH và tam giác DAH có:
AB = AD (theo giả thiết)
(chứng minh trên)
AH là cạnh chung
⇒ (c.g.c)
⇒ (hai góc tương ứng)
Mà (hai góc kề bù)
Nên
⇒AC ⊥ BD (đpcm).
Học tốt Các trường hợp bằng nhau của tam giác vuông
Các bài học để học tốt Các trường hợp bằng nhau của tam giác vuông Toán lớp 7 hay khác:
Giải sgk Toán 7 Bài 15: Các trường hợp bằng nhau của tam giác vuông
Giải sbt Toán 7 Bài 15: Các trường hợp bằng nhau của tam giác vuông
Xem thêm tóm tắt lý thuyết Toán lớp 7 Kết nối tri thức hay, chi tiết khác:
Săn SALE shopee tháng 5:
- Nước tẩy trang làm sạch L'Oreal giảm 50k
- Kem khử mùi Dove giảm 30k
- Khăn mặt khô Chillwipes chỉ từ 35k
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Nhóm học tập facebook miễn phí cho teen 2k9: fb.com/groups/hoctap2k9/
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Giải bài tập Toán lớp 7 của chúng tôi được biên soạn bám sát sgk Toán 7 Tập 1 & Tập 2 bộ sách Kết nối tri thức với cuộc sống (NXB Giáo dục).
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn lớp 7 (hay nhất) - KNTT
- Giải sgk Toán lớp 7 - KNTT
- Giải Tiếng Anh lớp 7 - KNTT
- Giải Khoa học tự nhiên lớp 7 - KNTT
- Giải sgk Lịch Sử lớp 7 - KNTT
- Giải sgk Địa Lí lớp 7 - KNTT
- Giải Giáo dục công dân lớp 7 - KNTT
- Giải sgk Công nghệ lớp 7 - KNTT
- Giải Tin học lớp 7 - KNTT
- Giải Hoạt động trải nghiệm lớp 7 - KNTT