Lớp 12: Bí kíp đạt ít nhất 24 điểm thi THPT Quốc Gia chỉ 399k, tại khoahoc.vietjack.com. Xem ngay Xem ngay!

Giải bất phương trình logarit bằng cách mũ hóa và tính đơn điệu - Toán lớp 12



Toán lớp 12: Bất phương trình logarit

Giải bất phương trình logarit bằng cách mũ hóa và tính đơn điệu

A. Phương pháp giải & Ví dụ

logaf(x) ≤ g(x)
0 < a < 1 logaf(x) ≤ g(x) ⇔ alogaf(x) ≥ ag(x) ⇔ f(x) ≥ ag(x) .
a > 1 logaf(x) ≤ g(x) ⇔ alogaf(x) ≤ ag(x) ⇔ 0 < f(x) ≤ ag(x)
0 < a < 1 logaf(x) ≥ g(x) ⇔ alogaf(x) ≤ ag(x) ⇔ 0 < f(x) ≤ ag(x)
a > 1 logaf(x) ≥ g(x) ⇔ alogaf(x) ≥ ag(x) ⇔ f(x) ≥ ag(x)

Nếu hàm số y=f(x) luôn đồng biến (hoặc luôn nghịch biến) trên thì bất phương trình f(u) > f(v) ⇔ u > v (hoặc u < v), ∀u, v ∈ D..

Ví dụ minh họa

Bài 1: Giải bất phương trình sau log2(4x+3) > x+2.

Hướng dẫn:

log2(4x+3) > x+2 ⇔ 2log2(4x+3) > 2x+2 ⇔ 4x-4.2x+3 > 0.

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Vậy tập nghiệm của bất phương trình là : (-∞;0)∪(log23;+∞).

Bài 2: Giải bất phương trình sau log2⁡(2x+1)+log3⁡(4x+1) ≤ 2

Hướng dẫn:

Đặt f(x)= log2⁡(2x+1)+log3⁡(4x+1) xác định và liên tục trên R.

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

nên hàm số đồng biến trên R .

Do đó f(x) ≤ f(0)=2 ⇔ x ≤ 0.

Vậy tập nghiệm của bất phương trình là : (-∞;0]

Bài 3: Giải bất phương trình log3 (2x+1)+x ≤ 2

Hướng dẫn:

Điều kiện x > -1/2.

Đặt f(x)=log3 (2x+1)+x

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Suy ra, hàm số đồng biến trên (-1/2;+∞)

Mặt khác f(x) ≤ f(1) ⇔ x ≤ 1

So điều kiện, suy ra -1/2 < x ≤ 1 ⇒ S=(-1/2;1]

B. Bài tập vận dụng

Bài 1: Giải bất phương trình log3(5x+2)+log4(3x+7) ≥ 5 .

Đặt f(x)=log3(5x+2)+log4(3x+7) xác định và liên tục trên R.

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

nên hàm số đồng biến trên R.

Do đó f(x) ≥ f(2)=5 ⇔ x ≥ 2 .

Vậy tập nghiệm của bất phương trình là [2;+ ∞).

Bài 2: Giải bất phương trình log3(4.3x-1) > 2x-1

log3(4.3x-1) > 2x-1 ⇔ 4.3x-1 > 32x-1 ⇔ 32x-4.3x < 0 ⇔ 0 < 3x < 4 ⇔ x < log34

Bài 3: Giải bất phương trình logx[log9(3x-9)] < 1

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Khi đó bất phương trình đã cho tương đương với:

logx[log9(3x-9)] < 1 ⇔ log9(3x-9) < x ⇔ 3x-9 < 9x ⇔ 9x-3x+9 > 0 ⇔ x ∈ R

So với điều kiện ta thu được tập nghiệm: (log210;+ ∞)

Bài 4: Giải của bất phương trình logx(log4(2x-4)) ≤ 1

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Khi đó bất phương trình đã cho tương đương với:

log4(2x-4) ≤ x ⇔ 2x-4 ≤ 4x ⇔ 4x-2x+4 ≥ 0 ⇔ x ∈ R

So với điều kiện ta thu được tập nghiệm (2;+ ∞)

Bài 5: Tìm số nghiệm nguyên của bất phương trình log2x (x2-5x+6) < 1

Trường hợp 1: 0 < x < 1/2 : Bất phương trình không có nghiệm nguyên.

Trường hợp 2: x > 1/2.

Bất phương trình tương đương với:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Vậy phương trình có hai nghiệm nguyên.

Bài 6: Giải bất phương trình

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Phương trình tương đương với:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Bài 7: Giải bất phương trình log2x+log3(x+1) < 2.

Điều kiện x > 0

Ta xét hàm số: y=f(x)=log2x+log3(x+1) có đạo hàm

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

với mọi x ∈ D nên hàm số là hàm đồng biến.

Ta có f(2)=2 nên log2x+log3(x+1) < 2 ⇔ x < 2

Kết hợp điều kiện ta có x ∈ (0;2).

Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:

Ngân hàng trắc nghiệm miễn phí ôn thi THPT Quốc Gia tại khoahoc.vietjack.com

KHÓA HỌC GIÚP TEEN 2002 ĐẠT 9-10 THI THPT QUỐC GIA

Tổng hợp các video dạy học từ các giáo viên giỏi nhất - CHỈ TỪ 399K tại khoahoc.vietjack.com


bat-phuong-trinh-logarit.jsp


Các loạt bài lớp 12 khác