Lớp 12: Bí kíp đạt ít nhất 24 điểm thi THPT Quốc Gia. Xem ngay!

Phương pháp cô lập m trong khảo sát tính đơn điệu của hàm số - Toán lớp 12



Phương pháp cô lập m trong khảo sát tính đơn điệu của hàm số

A. Phương pháp giải & Ví dụ

Phương pháp giải

Bước 1: Tìm y'

Hàm số đồng biến trên khoảng K khi và chỉ khi y' ≥ 0 ∀ x ∈ K

Hàm số nghịch biến trên khoảng K khi và chỉ khi y' ≤ 0 ∀x ∈ K

Bước 2: Cô lập tham số m đưa về dạng m≥g(x) hoặc m ≤ g(x)

Bước 3: Vẽ bảng biến thiên của g(x)

Bước 4: Kết luận

m ≥ g(x) ∀ x ∈ K khi và chỉ khi m ≥ Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

m ≤ g(x) ∀ x ∈ K khi và chỉ khi m ≤ Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Một số hàm số thường gặp

Hàm đa thức bậc ba: y = f(x) = ax3 + bx2 + cx + d (a ≠ 0)

⇒ f'(x) = 3ax2 + 2bx + c

Với a > 0 và f'(x) có hai nghiệm phân biệt x1 < x2

Hàm số đồng biến trên (α; β) khi và chỉ khi β ≤ xc hoặc α ≥ x2

Hàm số nghịch biến trên (α; β) khi và chỉ khi x1 ≤ α < β ≤ x2

Với a <0 và f'(x) có hai nghiệm phân biệt x1 < x2

Hàm số đồng biến trên (α; β) khi và chỉ khi x1 ≤ α < β ≤ x2

Hàm số nghịch biến trên (α; β) khi và chỉ khi β≤x1 hoặc α ≥ x2

Hàm phân thức bậc nhất: y = (ax + b)/(cx + d) ⇒ y'= (ad - bc)/(cx + d)2

Hàm số đồng biến trên khoảng K khi và chỉ khi ad-bc>0 và -d/c ∉ K

Hàm số nghịch biến trên khoảng K khi và chỉ khi ad - bc < 0 và -d/c ∉ K

Ví dụ minh họa

Ví dụ 1: Tìm m để hàm số y = x3/3 - mx2+(1 - 2m)x- 1 đồng biến trên (1; +∞)

Hướng dẫn

TXĐ: D = R

Ta có y' = x2 - 2mx + 1 - 2m

Hàm số đã cho đồng biến trên (1; +∞)⇔ ∀ x ∈(1; +∞),y' ≥ 0

⇔ ∀ x ∈ (1; +∞), x2 -2mx + 1 - 2m ≥ 0 ⇔ ∀ x ∈(1; +∞), x2 + 1 ≥ 2m(x + 1)

⇔ ∀ x ∈(1; +∞),2m ≤ (x2 + 1)/(x + 1) (do x + 1 > 0 khi x > 1)

Xét hàm số f(x) = (x2 + 1)/(x + 1), x ∈ (1; +∞)

f'(x) = (x2 + 2x - 1)/(x + 1)2 >0 với mọi x Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án (1;+∞)

Ta có bảng biến thiên:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Dựa vào bảng biến thiên để 2m ≤ f(x),∀ x ∈(1; +∞) thì 2m ≤ 1 ⇔ m ≤ 1/2

Ví dụ 2: Tìm giá trị của tham số m để hàm số y = (2x - 1)/(x - m) nghịch biến trên khoảng (2; 3)

Hướng dẫn

TXĐ: D=R\{m}.

Ta có y'= (-2m + 1)/(x - m)2 . Để hàm số nghịch biến trên khoảng (2; 3) thì hàm só phải xác định trên khoảng (2; 3) và y' < 0 ∀ x ∈ (2; 3).

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Vậy giá trị của tham số m cần tìm là Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Ví dụ 3: Tìm các giá trị m để hàm số y = mx3 - x2 + 3x + m - 2 đồng biến trên (-3 ; 0)

Hướng dẫn

TXĐ: D = R

Ta có y'= 3mx2 - 2x + 3. Hàm số đồng biến trên khoảng (-3; 0) khi và chỉ khi:

y' ≥ 0,∀ x ∈(-3; 0) (Dấu '' = '' xảy ra tại hữu hạn điểm trên (-3; 0))

⇔ 3mx2 - 2x + 3 ≥ 0, ∀ x ∈(-3; 0)

⇔ m ≥(2x-3)/(3x2 ) = g(x) ∀ x ∈(-3;0)

Ta có: g'(x) = (-2x + 6)/(3x3 ); g'(x) = 0 ⇔ x = 3

Bảng biến thiên

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Vậy m ≥ Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án= -1/3.

B. Bài tập vận dụng

Câu 1: Tìm tất cả giá trị của tham số m để hàm số y = mx2 - (m + 6)x nghịch biến trên khoảng (-1; +∞)

Ta có:

y' = 2mx - (m + 6). Theo yêu cầu bài toán ta có y' ≤ 0,∀ x ∈(-1; +∞).

⇒ 2mx - (m + 6) ≤ 0 ⇔ m ≤ Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án.

Xét hàm số g(x) = Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án với x ∈ (-1;+∞).

Bảng biến thiên

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Vậy -2 ≤ m ≤ 0.

Câu 2: Cho hàm số y = x3-3mx2+3(m2 - 1)x - 2m + 3. Tìm m để hàm số nghịch biến trên khoảng (1; 2).

Tập xác định: D = R

Đạo hàm y'=3x2-6mx+3(m2-1)

Hàm số nghịch biến trên khoảng (1; 2)⇔ y' ≤ 0 ∀ x ∈(1; 2)

Ta có Δ'= 9m2-9(m2-1)= 9 > 0 ∀m

Suy ra y' luôn có hai nghiệm phân biệt x1 = m - 1; x2 = m + 1(x1<x2)

Do đó y' ≤ 0 ∀ x ∈(1;2) ⇔ x1 ≤ 1 < 2 < x2Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Vậy giá trị m cần tìm là 1 ≤ m ≤ 2

Câu 3: Tất cả các giá trị thực của tham số m sao cho hàm số y = -x4 + (2m - 3)x2 + m nghịch biến trên khoảng (1; 2) là (-∞; p/q], trong đó phân số p/q tối giản và q > 0. Tính tổng p+q

Tập xác định D = R. Ta có y' = -4x3 + 2(2m - 3)x.

Hàm số nghịch biến trên (1;2) ⇔ y' ≤ 0,∀ x ∈(1; 2)⇔ m ≤ x2 + 3/2 = g(x),∀ x ∈(1; 2).

Lập bảng biến thiên của g(x)trên (1;2). g'(x) = 2x = 0 ⇔ x = 0

Bảng biến thiên

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Dựa vào bảng biến thiên, kết luận: m ≤ ming(x) ⇔ m ≤ 5/2. Vậy p + q = 5 + 2 = 7.

Câu 4: Tìm tất cả các giá trị thực của tham số m sao cho hàm số Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án đồng biến trên khoảng (2; +∞).

TXĐ: D = R\{m}

Ta có: y'=Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án .

Hàm số Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án đồng biến trên khoảng (2;+∞)

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án >0,∀ x ∈(2;+∞)

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Vậy giá trị của tham số m cần tìm là -3 < m ≤2

Câu 5: Tìm giá trị của m để hàm số Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án đồng biến trên khoảng (4; +∞)

Trường hợp 1: Khi m = -1, hàm số trở thành Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án với mọi x Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Do đó hàm số đồng biến trên mỗi khoảng xác định

⇒ m = -1 thỏa mãn yêu cầu bài toán

Trường hợp 2: Khi m ≠ -1, ta có Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Đặt g(x)=(m + 1) x2 - 2(m + 1)x - 4m và ta có y' cùng dấu với g(x)

Khi đó hàm số đồng biến trên khoảng (4; +∞).

⇔ ∀ x ∈(4; +∞), g(x) ≥ 0 ⇔ ∀ x ∈ (4; +∞), Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án ≤ m.

(do x2 - 2x - 4 > 0 ∀ x ∈(4; +∞))

Xét hàm Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án > 0 ∀ x ∈(4;+∞).

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Bảng biến thiên:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Dựa vào bảng biến thiên của h(x) suy ra,∀ x ∈(4; +∞),h(x) ≤ m Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án m ≥-1.

Câu 6: Tìm tất cả các giá trị thực của tham số m để hàm số Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án đồng biến trên khoảng (π/4; π/2).

Ta có: Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án .

Hàm số đồng biến trên khoảng (π/4; π/2) khi và chỉ khi:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Vậy giá trị của tham số m cần tìm là m ≤ 0

Câu 7: Tìm m để hàm số Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án đồng biến trên [1; +∞).

Ta có:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp áncó tập xác định là D = R\{-m} và Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án .

Hàm số đã cho đồng biến trên [1; +∞) ⇔ Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

x2 + 2mx - 4m ≥ 0,∀ x ∈[1; +∞)⇔Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Kết hợp với đk m > -1 ta được -1 < m ≤ 1/2.

Câu 8: Với giá trị nào của m thì hàm số y=√(x2+2mx+m2+1) đồng biến trên khoảng (1; +∞).

Đặt f(x) = x2 + 2mx + m2 + 1;

ta có Δ(f(x))'=m2-m2-1 = -1 < 0;a = 1 > 0 nên f(x)> 0 ∀ x ∈R.

Ta có Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Hàm số đồng biến trên khoảng (1; +∞) khi và chỉ khi y ' ≥ 0 ∀ x > 1

⇔ x + m ≥ 0 ⇔ m ≥ -x

Xét g(x) = -x ; g'(x)= - 1 < 0 ∀x1

Bảng biến thiên

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Dựa vào bảng biến thiên ta có m ≥ -1.

Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:

Ngân hàng trắc nghiệm miễn phí ôn thi THPT Quốc Gia tại khoahoc.vietjack.com

KHÓA HỌC GIÚP TEEN 2002 ĐẠT 9-10 THI THPT QUỐC GIA

Tổng hợp các video dạy học từ các giáo viên giỏi nhất - CHỈ TỪ 99K tại khoahoc.vietjack.com


tinh-don-dieu-cua-ham-so.jsp


Các loạt bài lớp 12 khác