Phương pháp cô lập m trong khảo sát tính đơn điệu của hàm số (cực hay)
Bài viết Phương pháp cô lập m trong khảo sát tính đơn điệu của hàm số với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Phương pháp cô lập m trong khảo sát tính đơn điệu của hàm số.
Phương pháp cô lập m trong khảo sát tính đơn điệu của hàm số (cực hay)
Bài giảng: Cách xét tính đơn điệu của hàm số - Cô Nguyễn Phương Anh (Giáo viên VietJack)
A. Phương pháp giải & Ví dụ
Phương pháp giải
Bước 1: Tìm y'
Hàm số đồng biến trên khoảng K khi và chỉ khi y' ≥ 0 ∀ x ∈ K
Hàm số nghịch biến trên khoảng K khi và chỉ khi y' ≤ 0 ∀x ∈ K
Bước 2: Cô lập tham số m đưa về dạng m≥g(x) hoặc m ≤ g(x)
Bước 3: Vẽ bảng biến thiên của g(x)
Bước 4: Kết luận
m ≥ g(x) ∀ x ∈ K khi và chỉ khi m ≥
m ≤ g(x) ∀ x ∈ K khi và chỉ khi m ≤
Một số hàm số thường gặp
Hàm đa thức bậc ba: y = f(x) = ax3 + bx2 + cx + d (a ≠ 0)
⇒ f'(x) = 3ax2 + 2bx + c
Với a > 0 và f'(x) có hai nghiệm phân biệt x1 < x2
Hàm số đồng biến trên (α; β) khi và chỉ khi β ≤ xc hoặc α ≥ x2
Hàm số nghịch biến trên (α; β) khi và chỉ khi x1 ≤ α < β ≤ x2
Với a <0 và f'(x) có hai nghiệm phân biệt x1 < x2
Hàm số đồng biến trên (α; β) khi và chỉ khi x1 ≤ α < β ≤ x2
Hàm số nghịch biến trên (α; β) khi và chỉ khi β≤x1 hoặc α ≥ x2
Hàm phân thức bậc nhất: y = (ax + b)/(cx + d) ⇒ y'= (ad - bc)/(cx + d)2
Hàm số đồng biến trên khoảng K khi và chỉ khi ad-bc>0 và -d/c ∉ K
Hàm số nghịch biến trên khoảng K khi và chỉ khi ad - bc < 0 và -d/c ∉ K
Ví dụ minh họa
Ví dụ 1: Tìm m để hàm số y = x3/3 - mx2+(1 - 2m)x- 1 đồng biến trên (1; +∞)
Hướng dẫn
TXĐ: D = R
Ta có y' = x2 - 2mx + 1 - 2m
Hàm số đã cho đồng biến trên (1; +∞)⇔ ∀ x ∈(1; +∞),y' ≥ 0
⇔ ∀ x ∈ (1; +∞), x2 -2mx + 1 - 2m ≥ 0 ⇔ ∀ x ∈(1; +∞), x2 + 1 ≥ 2m(x + 1)
⇔ ∀ x ∈(1; +∞),2m ≤ (x2 + 1)/(x + 1) (do x + 1 > 0 khi x > 1)
Xét hàm số f(x) = (x2 + 1)/(x + 1), x ∈ (1; +∞)
f'(x) = (x2 + 2x - 1)/(x + 1)2 >0 với mọi x (1;+∞)
Ta có bảng biến thiên:
Dựa vào bảng biến thiên để 2m ≤ f(x),∀ x ∈(1; +∞) thì 2m ≤ 1 ⇔ m ≤ 1/2
Ví dụ 2: Tìm giá trị của tham số m để hàm số y = (2x - 1)/(x - m) nghịch biến trên khoảng (2; 3)
Hướng dẫn
TXĐ: D=R\{m}.
Ta có y'= (-2m + 1)/(x - m)2 . Để hàm số nghịch biến trên khoảng (2; 3) thì hàm só phải xác định trên khoảng (2; 3) và y' < 0 ∀ x ∈ (2; 3).
Vậy giá trị của tham số m cần tìm là
Ví dụ 3: Tìm các giá trị m để hàm số y = mx3 - x2 + 3x + m - 2 đồng biến trên (-3 ; 0)
Hướng dẫn
TXĐ: D = R
Ta có y'= 3mx2 - 2x + 3. Hàm số đồng biến trên khoảng (-3; 0) khi và chỉ khi:
y' ≥ 0,∀ x ∈(-3; 0) (Dấu '' = '' xảy ra tại hữu hạn điểm trên (-3; 0))
⇔ 3mx2 - 2x + 3 ≥ 0, ∀ x ∈(-3; 0)
⇔ m ≥(2x-3)/(3x2 ) = g(x) ∀ x ∈(-3;0)
Ta có: g'(x) = (-2x + 6)/(3x3 ); g'(x) = 0 ⇔ x = 3
Bảng biến thiên
Vậy m ≥ = -1/3.
B. Bài tập vận dụng
Câu 1: Tìm tất cả giá trị của tham số m để hàm số y = mx2 - (m + 6)x nghịch biến trên khoảng (-1; +∞)
Lời giải:
Ta có:
y' = 2mx - (m + 6). Theo yêu cầu bài toán ta có y' ≤ 0,∀ x ∈(-1; +∞).
⇒ 2mx - (m + 6) ≤ 0 ⇔ m ≤ .
Xét hàm số g(x) = với x ∈ (-1;+∞).
Bảng biến thiên
Vậy -2 ≤ m ≤ 0.
Câu 2: Cho hàm số y = x3-3mx2+3(m2 - 1)x - 2m + 3. Tìm m để hàm số nghịch biến trên khoảng (1; 2).
Lời giải:
Tập xác định: D = R
Đạo hàm y'=3x2-6mx+3(m2-1)
Hàm số nghịch biến trên khoảng (1; 2)⇔ y' ≤ 0 ∀ x ∈(1; 2)
Ta có Δ'= 9m2-9(m2-1)= 9 > 0 ∀m
Suy ra y' luôn có hai nghiệm phân biệt x1 = m - 1; x2 = m + 1(x1<x2)
Do đó y' ≤ 0 ∀ x ∈(1;2) ⇔ x1 ≤ 1 < 2 < x2 ⇔
Vậy giá trị m cần tìm là 1 ≤ m ≤ 2
Câu 3: Tất cả các giá trị thực của tham số m sao cho hàm số y = -x4 + (2m - 3)x2 + m nghịch biến trên khoảng (1; 2) là (-∞; p/q], trong đó phân số p/q tối giản và q > 0. Tính tổng p+q
Lời giải:
Tập xác định D = R. Ta có y' = -4x3 + 2(2m - 3)x.
Hàm số nghịch biến trên (1;2) ⇔ y' ≤ 0,∀ x ∈(1; 2)⇔ m ≤ x2 + 3/2 = g(x),∀ x ∈(1; 2).
Lập bảng biến thiên của g(x)trên (1;2). g'(x) = 2x = 0 ⇔ x = 0
Bảng biến thiên
Dựa vào bảng biến thiên, kết luận: m ≤ ming(x) ⇔ m ≤ 5/2. Vậy p + q = 5 + 2 = 7.
Câu 4: Tìm tất cả các giá trị thực của tham số m sao cho hàm số đồng biến trên khoảng (2; +∞).
Lời giải:
TXĐ: D = R\{m}
Ta có: y'= .
Hàm số đồng biến trên khoảng (2;+∞)
⇔ >0,∀ x ∈(2;+∞)
Vậy giá trị của tham số m cần tìm là -3 < m ≤2
Câu 5: Tìm giá trị của m để hàm số đồng biến trên khoảng (4; +∞)
Lời giải:
Trường hợp 1: Khi m = -1, hàm số trở thành với mọi x
Do đó hàm số đồng biến trên mỗi khoảng xác định
⇒ m = -1 thỏa mãn yêu cầu bài toán
Trường hợp 2: Khi m ≠ -1, ta có
Đặt g(x)=(m + 1) x2 - 2(m + 1)x - 4m và ta có y' cùng dấu với g(x)
Khi đó hàm số đồng biến trên khoảng (4; +∞).
⇔ ∀ x ∈(4; +∞), g(x) ≥ 0 ⇔ ∀ x ∈ (4; +∞), ≤ m.
(do x2 - 2x - 4 > 0 ∀ x ∈(4; +∞))
Xét hàm > 0 ∀ x ∈(4;+∞).
Bảng biến thiên:
Dựa vào bảng biến thiên của h(x) suy ra,∀ x ∈(4; +∞),h(x) ≤ m m ≥-1.
Câu 6: Tìm tất cả các giá trị thực của tham số m để hàm số đồng biến trên khoảng (π/4; π/2).
Lời giải:
Ta có: .
Hàm số đồng biến trên khoảng (π/4; π/2) khi và chỉ khi:
Vậy giá trị của tham số m cần tìm là m ≤ 0
Câu 7: Tìm m để hàm số đồng biến trên [1; +∞).
Lời giải:
Ta có:
có tập xác định là D = R\{-m} và .
Hàm số đã cho đồng biến trên [1; +∞) ⇔
x2 + 2mx - 4m ≥ 0,∀ x ∈[1; +∞)⇔
Kết hợp với đk m > -1 ta được -1 < m ≤ 1/2.
Câu 8: Với giá trị nào của m thì hàm số y=√(x2+2mx+m2+1) đồng biến trên khoảng (1; +∞).
Lời giải:
Đặt f(x) = x2 + 2mx + m2 + 1;
ta có Δ(f(x))'=m2-m2-1 = -1 < 0;a = 1 > 0 nên f(x)> 0 ∀ x ∈R.
Ta có
Hàm số đồng biến trên khoảng (1; +∞) khi và chỉ khi y ' ≥ 0 ∀ x > 1
⇔ x + m ≥ 0 ⇔ m ≥ -x
Xét g(x) = -x ; g'(x)= - 1 < 0 ∀x1
Bảng biến thiên
Dựa vào bảng biến thiên ta có m ≥ -1.
C. Bài tập tự luyện
Bài 1. Tìm m để hàm số y = 2x3 + 3x2 + 6mx – 1 nghịch biến trên khoảng (0; 2).
Bài 2. Tìm tất cả các giá trị của tham số m sao cho hàm số đồng biến trên khoảng (3; +∞).
Bài 3. Tìm tất cả các giá trị thực của tham số m sao cho hàm số y = x3 - 6x2 + mx + 1 đồng biến trên khoảng (0; +∞).
Bài 4. Tìm tất cả các giá trị thực của tham số m sao cho hàm số y = x4 - 2(m - 1)x2 + m - 2 đồng biến trên khoảng (1; 3).
Bài 5. Cho hàm số y = x3 - 3(m2 + 3m + 3) x2 + 3(m2 + 1)2 x + m + 2. Gọi S là tập hợp các giá trị của tham số m sao cho hàm số đồng biến trên (1; +∞). Tìm S.
Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:
- Dạng 1: Xét tính đơn điệu của hàm số
- Trắc nghiệm Xét tính đơn điệu của hàm số
- Dạng 2: Tìm tham số m để hàm số đơn điệu
- Trắc nghiệm Tìm tham số m để hàm số đơn điệu
- Trắc nghiệm Phương pháp cô lập m trong khảo sát tính đơn điệu của hàm số
- Dạng 4: Tìm tham số m để hàm số đơn điệu trên đoạn có độ dài l
- Trắc nghiệm Tìm tham số m để hàm số đơn điệu trên đoạn có độ dài l
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Lớp 12 Kết nối tri thức
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT
- Lớp 12 Chân trời sáng tạo
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST
- Lớp 12 Cánh diều
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều