Phương pháp tính nguyên hàm từng phần cực hay
Bài viết Phương pháp tính nguyên hàm từng phần với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Phương pháp tính nguyên hàm từng phần.
Phương pháp tính nguyên hàm từng phần cực hay
Dạng 3.1. Nguyên hàm có dạng:
trong đó P(x)là đa thức
1. Phương pháp giải
Đặt
Vậy:
2. Ví dụ minh họa
Ví dụ 1. Tìm
Lời giải:
Đáp án: A
Đặt
Ví dụ 2. Một nguyên hàm của hàm số: f(x) = xsin√(1 + x2) là:
Lời giải:
Đáp án: A
* Xét:
Dùng phương pháp đổi biến: đặt
ta được
* Dùng phương pháp nguyên hàm từng phần để tính (*):
Đặt
Ta được
Ví dụ 3. Tìm nguyên hàm
Lời giải:
Đáp án: D
Đặt x − 1 = u => dx = du.
Khi đó
Ví dụ 4. Tìm nguyên hàm của hàm số: y = 2(x − 2) .sin2x
Lời giải:
Đáp án: A
Ta có: 2(x − 2).sin2x = (x − 2).(1 − cos2x) vì (cos2x= 1 − 2sin2x)
Do đó,
Đặt
Suy ra,
Ví dụ 5. Tính
Lời giải:
Đáp án: D
Đặt t = √x => t2 = x => 2tdt = dx. Ta được
Đặt
Do đó,
Dạng 3.2. Nguyên hàm có dạng
Trong đó P(x) là đa thức
1. Phương pháp giải
Đặt
Vậy:
2. Ví dụ minh họa
Ví dụ 1. Tính
Lời giải:
Đáp án: C
Dùng phương pháp từng phần:
Đặt:
Ví dụ 2. Một nguyên hàm của hàm số y = 2x.(ex − 1) là:
Lời giải:
Đáp án: A
Ta có:
Đặt
Ví dụ 3. Tìm nguyên hàm của hàm số f(x) = (x2 − 1)ex
Lời giải:
Đáp án: A
Đặt
Suy ra
Đặt
Suy ra
Ví dụ 4. Tìm
Lời giải:
Đáp án: A
Sử dụng phương pháp tính nguyên hàm từng phần, ta có:
Đặt u = 3x2 − x + 1 và dv = exdx
=> du = (6x − 1)dx và v = ex. Do đó:
Đặt u1 = 6x − 1 và dv1 = exdx ta có du1 = 6dx và v1 = ex. Do đó:
Từ đó suy ra:
Ví dụ 5. Tìm
Lời giải:
Đáp án: A
Đặt
Ta có:
Dạng 3.3. Nguyên hàm có dạng:
trong đó P(x) là đa thức
1. Phương pháp giải
Đặt
Vậy
2. Ví dụ minh họa
Ví dụ 1. Chọn câu khẳng định sai?
Lời giải:
Đáp án: A
* Xét phương án A:
Đặt
Do đó phương án A sai .
Ví dụ 2. Một nguyên hàm của hàm số là:
Lời giải:
Đáp án: C
Ta có:
Đặt
Ví dụ 3. Nguyên hàm của hàm số y= x.lnx là
Lời giải:
Đáp án: B
Ta có:
Đặt
Theo phương pháp nguyên hàm từng phần ta có
Ví dụ 4. Nguyên hàm của hàm số là
Lời giải:
Đáp án: C
Ta có:
Ví dụ 5. Nguyên hàm là
Lời giải:
Đáp án: A
Ta có:
Dạng 3.4. Nguyên hàm có dạng:
1. Phương pháp giải
Đặt
Vậy
Bằng phương pháp tương tự ta tính được sau đó thay vào I.
2. Ví dụ minh họa
Ví dụ 1. Tìm là
Lời giải:
Đáp án: A
Đặt
Ta có:
* Ta tính
Đặt
Suy ra,
Thay (2) vào (1) ta được:
Ví dụ 2. Tìm là
Lời giải:
Đáp án: C
Đặt
Ta có:
* Ta tính
Đặt
Suy ra,
Thay (2) vào (1) ta được:
Ví dụ 3. Tính là
Lời giải:
Đáp án: B
Ta có:
* Ta tìm
Đặt
Suy ra,
Trong đó,
Đặt
Ta có:
Thay (3) vào (2) ta được:
Thay vào (1) ta được:
Dạng 3.5. Các dạng khác
2. Ví dụ minh họa
Ví dụ 1. Cho F(x) = (x − 1).ex là một nguyên hàm của hàm số f(x). e2x. Tìm nguyên hàm của hàm số f’(x). e2x.
Lời giải:
Đáp án: C
Cách 1: Sử dụng tính chất của nguyên hàm
Từ giả thiết, ta có:
Suy ra
Vậy
Đặt
Cách 2: Sử dụng công thức nguyên hàm từng phần.
Ta có:
Từ giả thiết:
Vậy
Ví dụ 2. Cho F(x)= x2 là một nguyên hàm của hàm số f(x).e2x. Tìm nguyên hàm của hàm số f’(x). e2x?
Lời giải:
Đáp án: D
Cách 1: Sử dụng tính chất của nguyên hàm
Từ giả thiết, ta có
Suy ra
Vậy
Cách 2: Sử dụng công thức nguyên hàm từng phần.
Ta có
Từ giả thiết:
Vậy
Ví dụ 3. Cho là một nguyên hàm của hàm số
. Tìm nguyên hàm của hàm số f’(x). lnx
Lời giải:
Đáp án: A
Từ giả thiết
Đặt
Đặt
Ví dụ 4. Giả sử F(x) là một nguyên hàm của hàm số
. Biết F(1) = 0. Vậy F(x) bằng:
Lời giải:
Đáp án: B
Ta có
Mà F(1)= 0 nên
Ví dụ 5. Gọi F(x) là một nguyên hàm của hàm số f(x) = x + ln(x + 1) . Biết F(0) = 1, vậy F(x) bằng:
Lời giải:
Đáp án: A
Ta có
Lại có F(0) = 1 => C = 1
Vậy
Bài giảng: Cách làm bài tập nguyên hàm và phương pháp tìm nguyên hàm của hàm số cực nhanh - Cô Nguyễn Phương Anh (Giáo viên VietJack)
Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:
- Phương pháp tính nguyên hàm của các hàm số cơ bản cực hay
- Phương pháp tính nguyên hàm đổi biến số cực hay
- Phương pháp tính tích phân cơ bản cực hay
- Cách tính tích phân bằng phương pháp đổi biến số cực hay
- Phương pháp tính tích phân từng phần cực hay
- Phương pháp tính tích phân hàm chứa dấu giá trị tuyệt đối cực hay
- Phương pháp tính tích phân hàm số chẵn, hàm số lẻ cực hay
- 3 ứng dụng của tích phân: tính diện tích, thể tích, quãng đường, vận tốc cực hay
Săn SALE shopee tháng 12:
- Đồ dùng học tập giá rẻ
- Sữa dưỡng thể Vaseline chỉ hơn 40k/chai
- Tsubaki 199k/3 chai
- L'Oreal mua 1 tặng 3
- Soạn Văn 12
- Soạn Văn 12 (bản ngắn nhất)
- Văn mẫu lớp 12
- Giải bài tập Toán 12
- Giải BT Toán 12 nâng cao (250 bài)
- Bài tập trắc nghiệm Giải tích 12 (100 đề)
- Bài tập trắc nghiệm Hình học 12 (100 đề)
- Giải bài tập Vật lý 12
- Giải BT Vật Lí 12 nâng cao (360 bài)
- Chuyên đề: Lý thuyết - Bài tập Vật Lý 12 (có đáp án)
- Bài tập trắc nghiệm Vật Lí 12 (70 đề)
- Luyện thi đại học trắc nghiệm môn Lí (18 đề)
- Giải bài tập Hóa học 12
- Giải bài tập Hóa học 12 nâng cao
- Bài tập trắc nghiệm Hóa 12 (80 đề)
- Luyện thi đại học trắc nghiệm môn Hóa (18 đề)
- Giải bài tập Sinh học 12
- Giải bài tập Sinh 12 (ngắn nhất)
- Chuyên đề Sinh học 12
- Đề kiểm tra Sinh 12 (có đáp án)(hay nhất)
- Ôn thi đại học môn Sinh (theo chuyên đề)
- Luyện thi đại học trắc nghiệm môn Sinh (18 đề)
- Giải bài tập Địa Lí 12
- Giải bài tập Địa Lí 12 (ngắn nhất)
- Giải Tập bản đồ và bài tập thực hành Địa Lí 12
- Bài tập trắc nghiệm Địa Lí 12 (70 đề)
- Luyện thi đại học trắc nghiệm môn Địa (20 đề)
- Giải bài tập Tiếng anh 12
- Giải bài tập Tiếng anh 12 thí điểm
- Giải bài tập Lịch sử 12
- Giải tập bản đồ Lịch sử 12
- Bài tập trắc nghiệm Lịch Sử 12
- Luyện thi đại học trắc nghiệm môn Sử (20 đề)
- Giải bài tập Tin học 12
- Giải bài tập GDCD 12
- Giải bài tập GDCD 12 (ngắn nhất)
- Bài tập trắc nghiệm GDCD 12 (37 đề)
- Luyện thi đại học trắc nghiệm môn GDCD (20 đề)
- Giải bài tập Công nghệ 12