Phương pháp tính tích phân cơ bản cực hay
Phương pháp tính tích phân cơ bản cực hay - Toán lớp 12
Bài giảng: Ứng dụng của tích phân tính diện tích, tính thể tích - Cô Nguyễn Phương Anh (Giáo viên VietJack)
Dạng 1. Tính chất của tích phân
1. Phương pháp giải
Giả sử cho hai hàm số f(x) và g(x) liên tục trên K và a,b,c là ba số bất kỳ thuộc K. Khi đó ta có
Nếu f(x) ≥ 0, ∀x ∈ [a, b] thì
Nếu ∀x ∈ [a, b]: f(x) ≥ g(x)
Nếu ∀x ∈ [a, b] nếu M ≤ f(x) ≤ N thì
2. Ví dụ minh họa
Ví dụ 1. Cho tích phân . Tính tích phân
A . I= 40 B. I= 10 C. I= 20 D. I= 5
Đáp án: B
Đặt
Đổi cận: với x = 0 => t = 0
Với x = 6 => t = 3
Ta có:
Suy ra:
Ví dụ 2. Cho hàm số y= f(x) liên tục trên đoạn [0; 6] thỏa mãn
và
. Tính giá trị của biểu thức
A. P= 4 B. P= 16 C. P= 8 D. P= 10
Đáp án: A
Ta có:
Ví dụ 3. Cho hàm số f(x) liên tục trên R và
. Tính
.
A. I= 9 B. I= 1 C. I = − 1 D. I = −9
Đáp án: B
Ta có:
Kết hợp với giả thiết suy ra
Ví dụ 4. Cho
. Khi đó
bằng
A. 2 B. 4 C. 6 D. 8
Đáp án: C
Ta có:
Dạng 2. Tính trực tiếp
1. Phương pháp giải
Cho hàm số y= f(x) liên tục trên K và a, b là hai số bất kì thuộc K. Nếu F là một nguyên hàm của f trên K thì:
.
Như vậy, để tính tích phân của 1 hàm số ta cần:
• Bước 1: Xác định F(x) là nguyên hàm của hàm số.
• Bước 2. Tính F(b) − F(a).
Dạng 2.1. Hàm đa thức
2. Ví dụ minh họa
Ví dụ 1. Tích phân
bằng
A.I=1 B.I= 2 C.I= 3 D. I= −1
Đáp án: A
Ví dụ 2. Có bao nhiêu giá trị của m sao cho
:
A.1 B. 2 C. 3 D. 4
Đáp án: A
Ta có:
Vậy có 3 giá trị của m thỏa mãn.
Ví dụ 3. Tích phân
bằng
Đáp án: C
Ví dụ 4. Tính
Đáp án: B
Ta có:
Ví dụ 5. Tích phân
bằng
Đáp án: A
Do x ∈ (1; 8) => x > 0 nên
. Vì vậy
Dạng 2.2. Hàm phân thức
Ví dụ minh họa
Ví dụ 1. Tích phân
bằng
Đáp án: D
Ví dụ 2. Tích phân
bằng
Đáp án: B
Ta có:
Ví dụ 3. Cho tích phân
(a,b,c ∈ Q). Chọn khẳng định đúng trong các khẳng định sau:
A. a < 0 B. c < 0 C. b > 0 D. a + b + c > 0
Đáp án: D
Ta có:
Ví dụ 4. Tính
Đáp án: B
Ví dụ 5. Tính tích phân
A . 2ln3 − ln2 B. ln3 − 2ln2 C. 2ln3 − 3ln2 D. 3ln2 +2ln3
Đáp án: A
Cách 1: (Hệ số bất định)
Ta có:
Thay x= −2 vào hai tử số: 3= A và thay x= −3 vào hai tử số: −B= −1 suy ra B= 1
Do đó
Vậy:
Cách 2
Ta có:
Do đó
Dạng 2.3. Hàm căn thức
Ví dụ minh họa
Ví dụ 1. Tính
Đáp án: C
Ví dụ 2. Tính
Đáp án: B
Ví dụ 3. Tính
Đáp án: D
Ví dụ 4. Tính
Đáp án: A
Ví dụ 5. Tính
Đáp án: D
Dạng 2.4. Hàm lượng giác
2. Ví dụ minh họa
Ví dụ 1. Tích phân
có giá trị là
Đáp án: B
Ví dụ 2. Tích phân
có giá trị là
Đáp án: A
Ta có
Ví dụ 3. Giả sử
khi đó a+ b là
Đáp án: B
Suy ra
Vậy
Ví dụ 4. Tính
Đáp án: B
Ví dụ 5. Tính
Đáp án: A
Dạng 2.5. Hàm mũ, logarit
2. Ví dụ minh họa
Ví dụ 1. Tích phân
bằng
Đáp án: D
Vậy:
Ví dụ 2. Tích phân
có giá trị là:
Đáp án: D
Ta có:
Ví dụ 3. Tính
Đáp án: C
Ví dụ 4. Tính
Đáp án: B
Ví dụ 5. Tính
Đáp án: C
Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:
- Phương pháp tính nguyên hàm của các hàm số cơ bản cực hay
- Phương pháp tính nguyên hàm đổi biến số cực hay
- Phương pháp tính nguyên hàm từng phần cực hay
- Cách tính tích phân bằng phương pháp đổi biến số cực hay
- Phương pháp tính tích phân từng phần cực hay
- Phương pháp tính tích phân hàm chứa dấu giá trị tuyệt đối cực hay
- Phương pháp tính tích phân hàm số chẵn, hàm số lẻ cực hay
- 3 ứng dụng của tích phân: tính diện tích, thể tích, quãng đường, vận tốc cực hay
Giới thiệu kênh Youtube VietJack
Ngân hàng trắc nghiệm miễn phí ôn thi THPT Quốc Gia tại khoahoc.vietjack.com
- Hơn 75.000 câu trắc nghiệm Toán có đáp án
- Hơn 50.000 câu trắc nghiệm Hóa có đáp án chi tiết
- Gần 40.000 câu trắc nghiệm Vật lý có đáp án
- Hơn 50.000 câu trắc nghiệm Tiếng Anh có đáp án
- Kho trắc nghiệm các môn khác
- Soạn Văn 12
- Soạn Văn 12 (bản ngắn nhất)
- Văn mẫu lớp 12
- Giải bài tập Toán 12
- Giải BT Toán 12 nâng cao (250 bài)
- Bài tập trắc nghiệm Giải tích 12 (100 đề)
- Bài tập trắc nghiệm Hình học 12 (100 đề)
- Giải bài tập Vật lý 12
- Giải BT Vật Lí 12 nâng cao (360 bài)
- Chuyên đề: Lý thuyết - Bài tập Vật Lý 12 (có đáp án)
- Bài tập trắc nghiệm Vật Lí 12 (70 đề)
- Luyện thi đại học trắc nghiệm môn Lí (18 đề)
- Giải bài tập Hóa học 12
- Giải bài tập Hóa học 12 nâng cao
- Bài tập trắc nghiệm Hóa 12 (80 đề)
- Luyện thi đại học trắc nghiệm môn Hóa (18 đề)
- Giải bài tập Sinh học 12
- Giải bài tập Sinh 12 (ngắn nhất)
- Chuyên đề Sinh học 12
- Đề kiểm tra Sinh 12 (có đáp án)(hay nhất)
- Ôn thi đại học môn Sinh (theo chuyên đề)
- Luyện thi đại học trắc nghiệm môn Sinh (18 đề)
- Giải bài tập Địa Lí 12
- Giải bài tập Địa Lí 12 (ngắn nhất)
- Giải Tập bản đồ và bài tập thực hành Địa Lí 12
- Bài tập trắc nghiệm Địa Lí 12 (70 đề)
- Luyện thi đại học trắc nghiệm môn Địa (20 đề)
- Giải bài tập Tiếng anh 12
- Giải bài tập Tiếng anh 12 thí điểm
- Giải bài tập Lịch sử 12
- Giải tập bản đồ Lịch sử 12
- Bài tập trắc nghiệm Lịch Sử 12
- Luyện thi đại học trắc nghiệm môn Sử (20 đề)
- Giải bài tập Tin học 12
- Giải bài tập GDCD 12
- Giải bài tập GDCD 12 (ngắn nhất)
- Bài tập trắc nghiệm GDCD 12 (37 đề)
- Luyện thi đại học trắc nghiệm môn GDCD (20 đề)
- Giải bài tập Công nghệ 12