Cách tính tích phân bằng phương pháp đổi biến số cực hay
Cách tính tích phân bằng phương pháp đổi biến số cực hay - Toán lớp 12
Phương pháp giải
Trong đó u= u(x) có đạo hàm liên tục trên K, hàm số y= f(u) liên tục và sao cho hàm hợp f[u(x)] xác định trên K; a và b là hai số thuộc K
Dạng 3.1. Hàm đa thức
Ví dụ minh họa
Ví dụ 1. Tích phân
Đáp án: A
Đặt t = 1 − x => −dt = dx. Đổi cận: x = 0 => t = 1; x = 1 => t = 0
Dạng 3.2. Hàm phân thức
Ví dụ minh họa
Ví dụ 1. Tích phân
Đáp án: A
Đặt t = x+ 1 => dt = dx. Đổi cận: x = 0 => t = 1; x = 1 => t = 2
Ví dụ 2. Tích phân
Đáp án: D
Đặt
Đổi cận:
Khi đó
Vậy
Ví dụ 3. Tính tích phân . Khi đó S = a + 2b bằng:
Đáp án: D
Suy ra
Trong
Đặt t = x + 1 => dt =dx. Đổi cận: x = 1 => t = 2; x = 2 => y = 3.
Khi đó
Ví dụ 4. Tích phân
Đáp án: D
Đặt
Đổi cận
Ví dụ 5. Cho . Khi đó (2a + b) bằng
Đáp án: B
Ta có: x3 + 3x2 − x−3 = (x+1)(x2 + 2x − 3)
Đặt
Đổi cận x = 0 => t = 3; x = 1 => t = 6
Khi đó
Dạng 3.3. Hàm căn thức
Ví dụ minh họa
Ví dụ 1. Tích phân
Đáp án: A
Đặt
Đổi cận x = 0 => t = 1; x = 1 => t = √
Ví dụ 2. Tính
Đáp án: A
Đặt x = sint
Do đó
Ví dụ 3. Tích phân
Đáp án: A
Đặt
Suy ra:
Đổi cận
Ví dụ 4. Tính
Đáp án: A
Đặt t = x3 => dt = 3x2dx
Đổi cận: x = 0 => t = 0; x = 1 => t = 1
Đặt
Đổi cận t = 0 => u = 0; t = 1
Ví dụ 5. Tính
Đáp án: D
- Tính J:
Đặt t = √(x2 + 1)
Suy ra:
- Tính K:
Đặt t = √(x2 + 1)
Suy ra:
Vậy:
Dạng 3.4. Hàm lượng giác
Ví dụ minh họa
Ví dụ 1. Tính
Đáp án: B
Đặt: t = √(1 + 3 cosx)
Khi đó
Ví dụ 2. Tính
A. 2ln2 − 1 B.ln2 − 1 C. ln2 − 2 D.ln2+ 1
Đáp án: A
Đặt: t = 1 + cosx
Khi đó
Ví dụ 3. Tính
Đáp án: B
Đặt t = √(cos2x + 4sin2x) => t2 = cos2x + 4sin2x
Do đó
Vậy
Ví dụ 4.
A. 2 − 3ln 2 B. 1 + 3ln2 C. 3 + ln2 D. 3 − ln2
Đáp án: A
Ta có:
Cho nên:
Đặt t = 1 + sinx
Vậy
Ví dụ 5. Tích phân
Đáp án: D
Cách 1
Đặt t = cos2 + 1 => dt = −2sinxcosx.dx
Đổi cận
Cách 2
Đặt t = cosx dt = −sinx dx nên −dt = sinx.dx
Đổi cận
Dạng 3.5. Hàm mũ, logarit
Ví dụ minh họa
Ví dụ 1. Cho
A. I = cos1 B. I = 1 C. I = sin1 D. Đáp án khác
Đáp án: B
Đặt
Đổi cận:
Khi đó:
Ví dụ 2. Tính
Đáp án: A
Đặt
Đổi cận:
Khi đó:
Ví dụ 3. Tính
Đáp án: D
Đặt
Đổi cận: x = 0=> t = 0; x = ln2 => t = 1.
Tính
Vậy
Ví dụ 4. Tính
A. 2ln 3+2 B. 2ln2 + 3 C. 2ln3 − 1 D. 3ln2 − 1
Đáp án: C
Đặt t = √(ex − 2) => t2 + 2 = ex => exdx = 2tdt
Ví dụ 5. Tính
Đáp án: A
Đặt: t = √(3ex − 4)
Đổi cận:
với
Tính
Đặt:
Vậy :
Dạng 3.6. Tích phân
1. Phương pháp giải
Chứng minh:
• Đặt: b − x= t, suy ra x = b − t và dx = −dt,
• Do đó:
Vì tích phân không phụ thuộc vào biến số
2. Ví dụ minh họa
Ví dụ 1. Tính
A. 0 B.1 C. 2 D. 3
Đáp án: C
Đặt:
=> dt = −dx; x = 0
Nhưng tích phân không phụ thuộc và biến số, cho nên:
Lấy (1) + (2) vế với vế ta có:
Ví dụ 2. Tính
Đáp án: A
Đặt
=> dx = −dt; x = 0
=> f(x)dx = log2(1 + tanx)dx
Hay:
Vậy:
Ví dụ 3. Tính
Đáp án: A
Đặt
Cộng (1) và (2) ta có:
Dạng 3.7. Dạng khác
Ví dụ minh họa
Ví dụ 1. Tính
Đáp án: A
Đặt lnx = t, ta có .
Đặt : u = ln( 1+ t2) ; dv = dt
Từ đó có:
Tiếp tục đặt t = tanu, ta tính được
Thay vào (*) ta có
Ví dụ 2. Tính
Đáp án: D
+ Tính
Đặt t = √(1 + lnx) => t2 = 1 + lnx;
Khi x = 1 => t = 1; x = e => x = √2
+ Tính .
Đặt
Ví dụ 3. Tính
A. e − 3 + 2ln 2 B. e + 3 + ln 2
C. 2e − 6 + ln2 D. 4ln2 + e − 2
Đáp án: A
Ta có
Tính
Đặt t = 1 + lnx.
Ta có
Vậy I = e − 1 − 2(1 − ln2) = e − 3 + 2ln2
Ví dụ 4. Tính
A. √2 − 3 B. 2√2 − 3 C. 2√3 − 2 D. √6 − 2
Đáp án: B
Vậy I = I1 + I2 = 2√2 − 3
Ví dụ 5. Tính
Đáp án: B
+ Ta có
Đặt
+ Tính I1: Đặt u = x => du = dx;
Tính I2:
Vậy
Ví dụ 6. Tính
Đáp án: A
Đặt t = −x => dt = −dx
Bài giảng: Ứng dụng của tích phân tính diện tích, tính thể tích - Cô Nguyễn Phương Anh (Giáo viên VietJack)
Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:
- Phương pháp tính nguyên hàm của các hàm số cơ bản cực hay
- Phương pháp tính nguyên hàm đổi biến số cực hay
- Phương pháp tính nguyên hàm từng phần cực hay
- Phương pháp tính tích phân cơ bản cực hay
- Phương pháp tính tích phân từng phần cực hay
- Phương pháp tính tích phân hàm chứa dấu giá trị tuyệt đối cực hay
- Phương pháp tính tích phân hàm số chẵn, hàm số lẻ cực hay
- 3 ứng dụng của tích phân: tính diện tích, thể tích, quãng đường, vận tốc cực hay
Giới thiệu kênh Youtube VietJack
Ngân hàng trắc nghiệm miễn phí ôn thi THPT Quốc Gia tại khoahoc.vietjack.com
- Hơn 75.000 câu trắc nghiệm Toán có đáp án
- Hơn 50.000 câu trắc nghiệm Hóa có đáp án chi tiết
- Gần 40.000 câu trắc nghiệm Vật lý có đáp án
- Hơn 50.000 câu trắc nghiệm Tiếng Anh có đáp án
- Kho trắc nghiệm các môn khác
- Soạn Văn 12
- Soạn Văn 12 (bản ngắn nhất)
- Văn mẫu lớp 12
- Giải bài tập Toán 12
- Giải BT Toán 12 nâng cao (250 bài)
- Bài tập trắc nghiệm Giải tích 12 (100 đề)
- Bài tập trắc nghiệm Hình học 12 (100 đề)
- Giải bài tập Vật lý 12
- Giải BT Vật Lí 12 nâng cao (360 bài)
- Chuyên đề: Lý thuyết - Bài tập Vật Lý 12 (có đáp án)
- Bài tập trắc nghiệm Vật Lí 12 (70 đề)
- Luyện thi đại học trắc nghiệm môn Lí (18 đề)
- Giải bài tập Hóa học 12
- Giải bài tập Hóa học 12 nâng cao
- Bài tập trắc nghiệm Hóa 12 (80 đề)
- Luyện thi đại học trắc nghiệm môn Hóa (18 đề)
- Giải bài tập Sinh học 12
- Giải bài tập Sinh 12 (ngắn nhất)
- Chuyên đề Sinh học 12
- Đề kiểm tra Sinh 12 (có đáp án)(hay nhất)
- Ôn thi đại học môn Sinh (theo chuyên đề)
- Luyện thi đại học trắc nghiệm môn Sinh (18 đề)
- Giải bài tập Địa Lí 12
- Giải bài tập Địa Lí 12 (ngắn nhất)
- Giải Tập bản đồ và bài tập thực hành Địa Lí 12
- Bài tập trắc nghiệm Địa Lí 12 (70 đề)
- Luyện thi đại học trắc nghiệm môn Địa (20 đề)
- Giải bài tập Tiếng anh 12
- Giải bài tập Tiếng anh 12 thí điểm
- Giải bài tập Lịch sử 12
- Giải tập bản đồ Lịch sử 12
- Bài tập trắc nghiệm Lịch Sử 12
- Luyện thi đại học trắc nghiệm môn Sử (20 đề)
- Giải bài tập Tin học 12
- Giải bài tập GDCD 12
- Giải bài tập GDCD 12 (ngắn nhất)
- Bài tập trắc nghiệm GDCD 12 (37 đề)
- Luyện thi đại học trắc nghiệm môn GDCD (20 đề)
- Giải bài tập Công nghệ 12