Ứng dụng của định lí Thalès trong tam giác lớp 8 (Lý thuyết Toán 8 Cánh diều)
Với tóm tắt lý thuyết Toán lớp 8 Bài 2: Ứng dụng của định lí Thalès trong tam giác sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 8.
Ứng dụng của định lí Thalès trong tam giác lớp 8 (Lý thuyết Toán 8 Cánh diều)
Lý thuyết Ứng dụng của định lí Thalès trong tam giác
1. Ước lượng khoảng cách
Bằng cách sử dụng định lí Thalès, ta có thể ước lượng được khoảng cách giữa hai vị trí khi không thể đo đạc trực tiếp khoảng cách giữa hai vị trí đó.
Các nhà toán học và thiên văn học Hy Lạp cổ đại đã sử dụng hệ thức trên và một số hệ thức có được từ hiện tượng Nguyệt thực để ước lượng bán kính của Mặt Trời, Trái Đất, Mặt Trăng cũng như khoảng cách từ Trái Đất đến Mặt Trăng và Mặt Trời.
Ví dụ 1. Để đo khoảng cách giữa hai điểm A và B (không thể đo trực tiếp). Người ta xác định các điểm C, D, E như hình vẽ. Sau đó đo được khoảng cách giữa A và C là AC = 4 m, khoảng cách giữa C và E là EC = 1 m; khoảng cách giữa E và D là DE = 3 m. Tính khoảng cách giữa hai điểm A và B.
Hướng dẫn giải
Xét tam giác ABC có DE // AD (cùng vuông góc với AC) nên theo định lí Thalès, ta có:
hay
Suy ra (m).
Vậy khoảng cách giữa hai điểm A và B là 12 m.
2. Ước lượng chiều cao
Ví dụ 2. Bóng của một tháp trên mặt đất có độ dài BC = 63 m. Cùng thời điểm đó, một cây cột DE cao 2 m cắm vuông góc với mặt đất có bóng dài 3 m. Tính chiều cao của tháp.
Hướng dẫn giải
Xét tam giác ABC có DE // AB (cùng vuông góc với BC) nên theo hệ quả của định lí Thalès, ta có:
hay
Suy ra (m).
Vậy chiều cao của tháp là 42 m.
Bài tập Ứng dụng của định lí Thalès trong tam giác
Bài 1. Giữa hai điểm B và C có một cái ao. Để đo khoảng cách BC người ta đo được các đoạn thẳng AD = 2 m, BD = 10 m và DE = 5 m. Biết DE // BC, tính khoảng cách giữa hai điểm B và C.
Hướng dẫn giải
Ta có AB = AD + DB = 2 + 10 = 12 (m).
Xét tam giác ABC có DE // BC nên theo hệ quả của định lí Thalès, ta có:
hay
Suy ra (m).
Vậy khoảng cách giữa hai điểm B và C là 30 m.
Bài 2. Để tính chiều cao AB của một ngôi nhà (như hình vẽ), người ta đo chiều cao của cái cây ED = 4 m và biết được các khoảng cách BD = 7 m, DC = 5 m. Tính chiều cao AB của ngôi nhà.
Hướng dẫn giải
Ta có BC = BD + DC = 7 + 5 = 12 (m).
Xét tam giác ABC có ED // AB (cùng vuông góc với BC) nên theo hệ quả của định lí Thalès, ta có:
hay
Suy ra (m).
Vậy chiều cao của ngôi nhà là 9,6 m.
Bài 3. Một người cắm một cái cọc vuông góc với mặt đất sao cho bóng của đỉnh cọc trùng với bóng của ngọn cây. Biết cọc cao 1,5 m so với mặt đất, chân cọc cách gốc cây 8 m và cách bóng của đỉnh cọc 2 m. Tính chiều cao của cây.
Hướng dẫn giải
Ta có AE = AC + CE = 8 + 2 = 10 (m).
Xét tam giác ABE có DC // AB (cùng vuông góc với AE) nên theo hệ quả của định lí Thalès, ta có:
hay
Suy ra (m).
Vậy chiều cao của cây là 7,5 m.
Bài 4. Một nhóm các bạn học sinh lớp 8 đã thực hành đo chiều cao AB của một bức tường như sau: Dùng một cái cọc CD đặt cố định vuông góc với mặt đất, với CD = 3 m và CA = 5 m. Sau đó, các bạn đã phối hợp để tìm được điểm E trên mặt đất là giao điểm của hai tia BD, AC và đo được CE = 2 m (như hình vẽ). Tính chiều cao AB của bức tường.
Hướng dẫn giải
Ta có AE = EC + CA = 2 + 5 = 7 (m).
Xét tam giác EAB có DC // AB (cùng vuông góc với AE) nên theo hệ quả của định lí Thalès, ta có:
hay
Suy ra (m).
Vậy chiều cao AB của bức tường là 10,5 m.
Học tốt Ứng dụng của định lí Thalès trong tam giác
Các bài học để học tốt Ứng dụng của định lí Thalès trong tam giác Toán lớp 8 hay khác:
Giải sgk Toán 8 Bài 2: Ứng dụng của định lí Thalès trong tam giác
Giải sbt Toán 8 Bài 2: Ứng dụng của định lí Thalès trong tam giác
Xem thêm tóm tắt lý thuyết Toán lớp 8 Cánh diều hay khác:
Lý thuyết Toán 8 Bài 4: Tính chất đường phân giác của tam giác
Lý thuyết Toán 8 Bài 6: Trường hợp đồng dạng thứ nhất của tam giác
Lý thuyết Toán 8 Bài 7: Trường hợp đồng dạng thứ hai của tam giác
Xem thêm các tài liệu học tốt lớp 8 hay khác:
- Giải sgk Toán 8 Cánh diều
- Giải SBT Toán 8 Cánh diều
- Giải lớp 8 Cánh diều (các môn học)
- Giải lớp 8 Kết nối tri thức (các môn học)
- Giải lớp 8 Chân trời sáng tạo (các môn học)
Tủ sách VIETJACK shopee lớp 6-8 (2025):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Giải bài tập Toán 8 Cánh diều hay nhất, chi tiết của chúng tôi được biên soạn bám sát sgk Toán 8 Cánh diều (Tập 1 & Tập 2) (NXB ĐH Sư phạm).
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn văn 8 Cánh diều (hay nhất)
- Soạn văn 8 Cánh diều (ngắn nhất)
- Giải sgk Toán 8 - Cánh diều
- Giải Tiếng Anh 8 Global Success
- Giải sgk Tiếng Anh 8 Smart World
- Giải sgk Tiếng Anh 8 Friends plus
- Giải sgk Khoa học tự nhiên 8 - Cánh diều
- Giải sgk Lịch Sử 8 - Cánh diều
- Giải sgk Địa Lí 8 - Cánh diều
- Giải sgk Giáo dục công dân 8 - Cánh diều
- Giải sgk Tin học 8 - Cánh diều
- Giải sgk Công nghệ 8 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 8 - Cánh diều
- Giải sgk Âm nhạc 8 - Cánh diều