Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 1)
Đề kiểm tra Hình học 11 - Học kì 2
Thời gian làm bài: 45 phút
Phần I: Trắc nghiệm
Câu 1: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành.
- Đặt
. Khẳng định nào sau đây đúng?
Câu 2: Cho hình hộp ABCD. A'B'C'D'. Gọi I và K lần lượt là tâm của hình bình hành ABB’A’ và BCC’B’. Khẳng định nào sau đây sai?
Câu 3: Trong không gian cho ba đường thẳng phân biệt a,b,c. Khẳng định nào sau đây đúng?
A. Nếu a và b cùng vuông góc với c thì a // b.
B. Nếu a //b và c ⊥ a thì c ⊥ b.
C. Nếu góc giữa a và c bằng góc giữa b và c thì a // b.
D. Nếu a và b cùng nằm trong mp (α) // c thì góc giữa a và c bằng góc giữa b và c.
2004 - Toán Lý Hóa
Câu 4: Cho tứ diện ABCD có AB = CD. Gọi I, J, E, F lần lượt là trung điểm của AC, BC, BD, AD. Góc giữa (IE, JF) bằng:
A. 30° B. 45°
C. 60° D. 90°
Câu 5: Cho tứ diện ABCD có AB = AC = AD = a và
. Hãy xác định góc giữa cặp vectơ
?
A. 60° B. 45°
C. 120° D. 90°
Câu 6: Cho tứ diện ABCD có AB = AC và DB = DC. Khẳng định nào sau đây đúng?
Câu 7: Cho hình chóp S.ABCD, đáy ABCD là hình vuông cạnh bằng a và SA ⊥ (ABCD). Biết
. Tính góc giữa SC và mp (ABCD).
A. 30° B. 45°
C. 60° D.75°
Câu 8: Cho tứ diện ABCD có AC = AD và BC = BD. Gọi I là trung điểm của CD. Khẳng định nào sau đây sai?
A. Góc giữa hai mặt phẳng (ABC) và (ABD) là
B. Góc giữa hai mặt phẳng (ACD) và (BCD) là
C. (BCD) ⊥ (AIB).
D. (ACD) ⊥ (AIB).
Phần II: Tự luận
Câu 1: Trong mặt phẳng (P), cho tam giác đều ABC cạnh a. Trên tia Ax vuông góc với mặt phẳng (P) lấy điểm S sao cho SA = a. Khoảng cách từ A đến (SBC) bằng:
Câu 2: Cho hình chóp S. ABCD có đáy ABCD là hình thoi cạnh a và
. Hai mặt phẳng (SAC) và (SBD) cùng vuông góc với đáy, góc giữa hai mặt phẳng
(SAB) và (ABCD) bằng 30°. Tính khoảng cách giữa hai đường thẳng SA, CD theo a ?
Đáp án & Hướng dẫn giải
Phần I: Trắc nghiệm
Câu 1:
Chọn A.
- Gọi O là tâm của hình bình hành ABCD. Ta có:
Câu 2:
Chọn D.
+) A đúng, vì:
- Tam giác B’AC có IK là đường trung bình của tam giác nên
- Tứ giác ACC’A’ là hình bình hành nên
+) B đúng, vì 4 điểm I, K, C, A cùng thuộc mp(B’AC).
+) C đúng, vì:
+) D sai do giá của ba vectơ
đều song song hoặc trùng với mặt phẳng (ABCD). Do đó, theo định nghĩa sự đồng phẳng của các vectơ, ba vectơ trên đồng phẳng.
Câu 3:
Chọn B.
+) A sai vì: “nếu a và b cùng vuông góc với c thì a và b hoặc song song hoặc chéo nhau".
+) C sai do:
- Giả sử hai đường thẳng a và b chéo nhau, ta dựng đường thẳng c là đường vuông góc chung của a và b.
- Khi đó góc giữa a và c bằng với góc giữa b và c và cùng bằng 90°, nhưng hiển nhiên hai đường thẳng a và b không song song.
+) D sai do: giả sử a vuông góc với c, b song song với c, khi đó góc giữa a và c bằng 90°, còn góc giữa b và c bằng 0°.
⇒ Do đó B đúng.
Câu 4:
Chọn D.
+) Từ giả thiết ta có:
- IJ là đường trung bình của tam giác ABC nên:
- EF là đường trung bình của tam giác ABD nên:
- Suy ra: tứ giác IJEF là hình bình hành (1)
- Lại có: IF là đường trung bình của tam giác ACD nên:
- Từ (1) và (2) suy ra: tứ giác IJEF là hình thoi.
⇒ IE ⊥ JF (tính chất hai đường chéo của hình thoi).
⇒ Do đó, góc giữa hai đường thẳng IE và JF là: 90°.
Câu 5:
Chọn D.
- Ta có:
Câu 6:
Chọn D.
- Gọi E là trung điểm của BC.
+)Tam giác ABC có AB = AC nên tam giác ABC cân tại A có AE là đường trung tuyến nên: AE ⊥ BC.
+) Tam giác BCD có DB = DC nên tam giác DBC cân tại D có DE là đường trung tuyến nên đồng thời là đường cao: DE ⊥ BC.
+) Ta có:
Câu 7:
Chọn A.
- Ta có:
- Vì ABCD là hình vuông cạnh a:
Câu 8:
Chọn A.
+) Tam giác BCD có BC = BD nên cân tại B: Có BI là đường trung tuyến nên đồng thời là đường cao: CD ⊥ BI (1)
+) Tam giác ACD có AC = AD nên cân tại A: Có AI là đường trung tuyến nên đồng thời là đường cao: CD ⊥ AI (2)
- Từ (1) và (2) ⇒ CD ⊥ (ABI) (3)
+) Vì:
- Suy ra: góc giữa hai mặt phẳng (ACD) và (BCD) là
- Vậy: A sai.
Phần II: Tự luận
Câu 1:
Chọn C.
● Gọi M là trung điểm của BC ; H là hình chiếu vuông góc của A trên SM.
● Vì tam giác ABC đều nên: BC ⊥ AM.
- Trong tam giác vuông SAM, đường cao AH có:
Câu 2:
- Gọi O là giao điểm của AC và BD.
- Kẻ: OI ⊥ AB, OH ⊥ SI.
+) Ta có:
+) Ta lại có:
- Do đó, góc giữa hai mặt phẳng (SAB) và (ABCD) bằng góc
+) Khi đó: CD // AB nên CD // ( SAB).
Suy ra:
- Ta có:
+) Tam giác ABC có BC = BA và
nên tam giác ABC đêù
- Trong tam giác OIA có:
Xem thêm các đề kiểm tra, đề thi Toán 11 Đại số, Hình học có đáp án hay khác:
- Đề kiểm tra 45 phút Hình học 11 Chương 2 có đáp án (Đề 1)
- Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 2)
- Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3)
Ngân hàng trắc nghiệm lớp 11 tại khoahoc.vietjack.com
- Hơn 75.000 câu trắc nghiệm Toán 11 có đáp án
- Hơn 50.000 câu trắc nghiệm Hóa 11 có đáp án chi tiết
- Gần 40.000 câu trắc nghiệm Vật lý 11 có đáp án
- Kho trắc nghiệm các môn khác
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Nhóm học tập facebook miễn phí cho teen 2k4: fb.com/groups/hoctap2k4/
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Soạn Văn 10
- Soạn Văn 10 (bản ngắn nhất)
- Giải bài tập Toán 10
- Giải bài tập Toán 10 nâng cao
- Bài tập trắc nghiệm Hình học 10 (50 đề)
- Giải bài tập Vật lý 10
- Giải bài tập Vật lý 10 nâng cao
- Bài tập trắc nghiệm Vật Lí 10 (70 đề)
- Giải bài tập Hóa học 10
- Giải bài tập Hóa học 10 nâng cao
- Bài tập trắc nghiệm Hóa 10 (70 đề)
- Đề kiểm tra Hóa học 10 (100 đề)
- Giải bài tập Sinh học 10
- Giải bài tập Sinh 10 (ngắn nhất)
- Bài tập trắc nghiệm Sinh học 10 (35 đề)
- Giải bài tập Địa Lí 10
- Giải bài tập Địa Lí 10 (ngắn nhất)
- Giải Tập bản đồ và bài tập thực hành Địa Lí 10
- Bài tập trắc nghiệm Địa Lí 10 (50 đề)
- Đề kiểm tra Địa Lí 10 (100 đề)
- Giải bài tập Tiếng anh 10
- Giải sách bài tập Tiếng Anh 10
- Giải bài tập Tiếng anh 10 thí điểm
- Giải bài tập Lịch sử 10
- Giải bài tập Lịch sử 10 (ngắn nhất)
- Giải tập bản đồ Lịch sử 10
- Bài tập trắc nghiệm Lịch Sử (50 đề) 10
- Giải bài tập Tin học 10
- Giải bài tập GDCD 10
- Giải bài tập GDCD 10 (ngắn nhất)
- Bài tập trắc nghiệm GDCD 10 (38 đề)
- Giải bài tập Công nghệ 10
2004 - Toán Lý Hóa