Cách giải bài tập về Lũy thừa (cực hay)
Bài viết Cách giải bài tập về Lũy thừa với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách giải bài tập về Lũy thừa.
Cách giải bài tập về Lũy thừa (cực hay)
Bài giảng: Tất tần tật về Lũy thừa - Cô Nguyễn Phương Anh (Giáo viên VietJack)
A. Phương pháp giải & Ví dụ
• Cho số thực b và số nguyên dương n (n ≥ 2). Số a được gọi là căn bậc n của số b nếu an = b.
• Chú ý:
Số mũ α | Cơ số a | Lũy thừa aα |
α = n ∈ N* | a ∈ R | aα = an = a⋅a⋯a (n thừa số a) |
α = 0 | a ≠ 0 | aα = a0 = 1 |
α = -n, (n ∈ N*) | a ≠ 0 | |
α = m/n,(m ∈ Z, n ∈ N*) | a > 0 | |
α = limrn, (rn ∈ Q,n ∈ N*) | a > 0 | aα = limarn |
2. Một số tính chất của lũy thừa
• Giả thuyết rằng mỗi biểu thức được xét đều có nghĩa:
• Nếu a > 1 thì aα > aβ ⇔ α > β; Nếu 0 < a < 1 thì aα > aβ ⇔ α < β.
• Với mọi 0 > a < b, ta có: am < bm ⇔ m > 0; am > bm ⇔ m < 0
• Chú ý:
◦ Các tính chất trên đúng trong trường hợp số mũ nguyên hoặc không nguyên.
◦ Khi xét lũy thừa với số mũ 0 và số mũ nguyên âm thì cơ số a phải khác 0.
◦ Khi xét lũy thừa với số mũ không nguyên thì cơ số a phải dương.
3. Một số tính chất của căn bậc n
• Với a,b ∈ R;n ∈ N*, ta có:
• Với a,b ∈ R, ta có:
Ví dụ minh họa
Bài 1: Tính giá trị của biểu thức
Lời giải:
Bài 2: Biết 4x + 4-x = 23 tính giá trị của biểu thức P = 2x + 2-x :
Lời giải:
Bài 3: Cho các số thực dương a và b. Thu gọn biểu thức
Lời giải:
B. Bài tập vận dụng
Bài 1: Cho khi đó giá trị của biểu thức f(1,3) bằng bao nhiêu?
Lời giải:
Vì x = 1, 3 > 0 nên ta có:
Bài 2: Tính giá trị của biểu thức sau:
Lời giải:
Bài 3: Cho a,b là các số dương. Rút gọn biểu thức
Lời giải:
Bài 4: Cho các số thực dương a và b. Rút gọn biểu thức
Lời giải:
Bài 5: Cho a > 0 , b > 0. Thu gọn biểu thức
Lời giải:
Bài 6: Rút gọn biểu thức
Lời giải:
Bài 7: Cho các số thực dương a và b. Biểu thức thu gọn của biểu thức
Lời giải:
Bài 8: Cho các số thực dương phân biệt a và b. Biểu thức thu gọn của biểu thức. Tìm m và n
Lời giải:
Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:
- Trắc nghiệm lũy thừa
- Dạng 2: Lôgarit: lý thuyết, tính chất, phương pháp giải
- Trắc nghiệm Lôgarit
- Dạng 3: Tìm tập xác định của hàm số mũ, lũy thừa, lôgarit
- Trắc nghiệm tìm tập xác định của hàm số mũ, lũy thừa, lôgarit
- Dạng 4: Các dạng bài tập về hàm số mũ, lũy thừa, lôgarit
- Trắc nghiệm về hàm số mũ, lũy thừa, lôgarit
- Dạng 5: Giới hạn, đạo hàm của hàm số mũ, lũy thừa, lôgarit
- Trắc nghiệm giới hạn, đạo hàm của hàm số mũ, lũy thừa, lôgarit
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Lớp 12 Kết nối tri thức
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT
- Lớp 12 Chân trời sáng tạo
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST
- Lớp 12 Cánh diều
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều