Lớp 12: Bí kíp đạt ít nhất 24 điểm thi THPT Quốc Gia chỉ 399k, tại khoahoc.vietjack.com. Xem ngay Xem ngay!

Phương trình logarit chứa tham số - Toán lớp 12



Toán lớp 12: Phương trình logarit

Phương trình logarit chứa tham số

A. Phương pháp giải & Ví dụ

♦ Dạng toán Tìm m để phương trình có số nghiệm cho trước:

    • Bước 1. Tách m ra khỏi biến số x và đưa về dạng f(x)=A(m).

    • Bước 2. Khảo sát sự biến thiên của hàm số f(x) trên D.

    • Bước 3. Dựa vào bảng biến thiên để xác định giá trị tham số A(m) để đường thẳng y=A(m) nằm ngang cắt đồ thị hàm số y=f(x).

    • Bước 4. Kết luận các giá trị của A(m) để phương trình f(x)=A(m) có nghiệm (hoặc có k nghiệm) trên D.

♦ Lưu ý

    • Nếu hàm số y=f(x) có giá trị lớn nhất và giá trị nhỏ nhất trên D thì giá trị A(m) cần tìm là những m thỏa mãn:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

    • Nếu bài toán yêu cầu tìm tham số để phương trình có k nghiệm phân biệt, ta chỉ cần dựa vào bảng biến thiên để xác định sao cho đường thẳng y=A(m) nằm ngang cắt đồ thị hàm số y=f(x) tại k điểm phân biệt.

Hoặc sử dụng điều kiện có nghiệm của phương trình bậc hai với lưu ý sau.

♦ Nhắc lại: Phương trình bậc hai có hai nghiệm thỏa mãn

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Hoặc sử dụng định lí đảo về dấu tam thức bậc hai:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Ví dụ minh họa

Bài 1: Tìm tham số thực m để phương trình: log23 x+log3x+m=0 có nghiệm.

Hướng dẫn:

Tập xác định D=(0;+∞).

Đặt log3x=t. Khi đó phương trình trở thành t2+t+m=0 (*)

Phương trình đã cho có nghiệm khi phương trình (*) có nghiệm: Δ=1-4m ≥ 0 ⇔ m ≤ 1/4.

Vậy để phương trình có nghiệm thực thì: m ≤ 1/4.

Bài 2: Tìm tham số m để phương trình log2(5x-1)log4(2.5x-2)=m có nghiệm thực x ≥ 1.

Hướng dẫn:

Điều kiện: 5x-1 > 0 ⇔ x > 0

log2(5x-1)log4(2.5x-2)=m

⇔ log2(5x-1) 1/2 log2(2(5x-1))=m

⇔ log2(5x-1)(1+log2(5x-1))=2m

⇔ log22 (5x-1)+log2(5x-1)=2m

Đặt log2(5x-1)=t. Khi đó phương trình đã cho trở thành t2+t-2m=0    (*)

Phương trình đã cho có nghiệm x ≥ 1 khi phương trình (*)có nghiệm

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Vậy phương trình có nghiệm thực x ≥ 1 thì m ≥ 3.

Bài 3: Tìm tham số thực m để phương trình Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án có nghiệm thực duy nhất.

Hướng dẫn:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

⇔ log(mx)=2log(x+1)

⇔ log(mx)=log(x+1)2

⇔ mx=(x+1)2 ⇔ x2+(2-m)x+1=0 (*)

Phương trình đã cho có nghiệm duy nhất khi phương trình (*)có một nghiệm thỏa mãn

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

TH1: phương trình (*) có hai nghiệm thỏa mãn -1 < x1 ≤ x2:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

TH2: phương trình (*) có hai nghiệm thỏa mãn x1 < -1 < x2: af(-1) < 0 ⇔ m < 0.

Các giá trị m cần tìm Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

B. Bài tập vận dụng

Bài 1: Tìm tham số thực m để phương trình sau có hai nghiệm thực phân biệt trong khoảng (4;6).

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án
Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Khi đó phương trình đã cho trở thành: mt2-2(m2+1)t+m3+m+2 = 0 (*).

Yêu cầu bài toán tương đương với (*) phải có hai nghiệm phân biệt

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Vậy 0 < m ≠ 1 thỏa yêu cầu bài toán.

Bài 2: Tìm m để phương trình sau có ít nhất một nghiệm trong đoạn[1;3√3 ] .

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Điều kiện: x > 0.

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Khi đó phương trình đã cho trở thành: t2+t-2m-2 = 0 ⇔ t2+t=2m+2 (*).

Yêu cầu bài toán tương đương với (*) phải có ít nhất một nghiệm thuộc đoạn [1;2].

Xét hàm số f(t)=t2+t trên đoạn[1;2] . Ta có f'(t) = 2t+1 > 0, ∀t ∈ [1;2]

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Để (*) có ít nhất một nghiệm thuộc đoạn [1;2] thì 2 < 2m+2 < 6 ⇔ 0 < m < 2

Bài 3: Tìm tham số m để (m-4)log22 x-2(m-2)log2 x+m-1=0 có hai nghiệm thỏa 1 < x1 < 2 < x2

Đặt log2 x=t, phương trình đã cho trở thành:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Yêu cầu bài toán tương đương với (*) phải có hai nghiệm thỏa mãn 0 < t1 < 1 < t2.

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Từ BBT ⇒ m > 4.

Bài 4: Tìm tham số m để phương trình sau có nghiệm thực thuộc [32;+∞].

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án
Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Đặt log2 x=t, phương trình đã cho trở thành:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Yêu cầu bài toán tương đương với (*) phải có hai nghiệm phân biệt t ≥ 5:

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Bảng biến thiên

Toán lớp 12 | Chuyên đề: Lý thuyết - Bài tập có đáp án

Căn cứ BBT suy ra giá trị cần tìm là m ∈ (1;√17/2].

Bài 5: Tìm tất cả các giá trị thực của tham số m để phương trình log2 (mx-x2 )=2 vô nghiệm?

log2 mx-x2 = 2 ⇔ -x2+mx-4 = 0 (*)

Phương trình (*) vô nghiệm ⇔ Δ < 0 ⇔ m2-16 < 0 ⇔ -4 < m < 4

Bài 6: Tìm tất cả các giá trị thực của tham số m để phương trình log42 x+3log4 x+2m-1=0 có 2 nghiệm phân biệt?

Phương trình có 2 nghiệm phân biệt ⇔ Δ > 0 ⇔ 13-8m > 0 ⇔ m < 13/8

Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:

Ngân hàng trắc nghiệm miễn phí ôn thi THPT Quốc Gia tại khoahoc.vietjack.com

KHÓA HỌC GIÚP TEEN 2002 ĐẠT 9-10 THI THPT QUỐC GIA

Tổng hợp các video dạy học từ các giáo viên giỏi nhất - CHỈ TỪ 399K tại khoahoc.vietjack.com


phuong-trinh-logarit.jsp


Các loạt bài lớp 12 khác