Tổng hợp lý thuyết Chương 4: Số phức
Tổng hợp lý thuyết Chương 4: Số phức
Dưới đây là phần tổng hợp kiến thức, công thức, lý thuyết Toán lớp 12 Chương 4: Số phức ngắn gọn, chi tiết. Hi vọng tài liệu Lý thuyết Toán lớp 12 theo chương này sẽ giúp bạn nắm vững kiến thức môn Toán lớp 12.
- Lý thuyết Số phức
- Lý thuyết Cộng, trừ và nhân số phức
- Lý thuyết Phép chia số phức
- Lý thuyết Phương trình bậc hai với hệ số thực
- Lý thuyết tổng hợp chương Số phức
Lý thuyết Số phức
A. Tóm tắt lý thuyết
1. Phần thực và phần ảo của số phức, số phức liên hợp.
a) Số phức z là biểu thức có dạng z = a + bi (a, b ∈ R, i2 = -1) . Khi đó:
+ Phần thực của z là a, phần ảo của z là b và i được gọi là đơn vị ảo.
b) Số phức liên hợp của z là .
+ Tổng và tích của z và z− luôn là một số thực.
Đặc biệt:
+ Số phức z = a + 0i có phần ảo bằng 0 được coi là số thực và viết là z = a
+ Số phức z = 0 + bi có phần thực bằng 0 được gọi là số ảo (hay số thần ảo) và viết là
+ Số i = 0 + li = li.
+ Số: 0 = 0 + 0i vừa là số thực vừa là số ảo.
2. Số phức bằng nhau.
+ Cho hai số phức z1 = a1 + b1i, z2 + b2i (a1, a2, b1, b2 ∈ R). Khi đó:
3. Biểu diễn hình học của số phức, mô đun của số phức.
a) Biễu diễn hình học của số phức.
+ Số phức z = a + bi (a, b ∈ R) được biểu diễn bởi điểm M(a; b) trong mặt phẳng tọa độ.
+ z và z− được biểu diễn bởi hai điểm đối xứng nhau qua trục 0x.
b) Mô đun của số phức.
+ Mô đun của số phức z là .
+
Lý thuyết Cộng, trừ và nhân số phức
A. Tóm tắt lý thuyết
Cho hai số phức z1 = a + bi và z2 = c + di thì:
• Phép cộng số phức: z1 + z2 = (a + c) + (b + d)i
• Phép trừ số phức: z1 - z2 = (a - c) + (b - d)i
- Mọi số phức z = a + bi thì số đối của z là -z = -a - bi: z + (-z) = (-z) + z = 0
• Phép nhân số phức: z1.z2 = (ac - bd) + (ad + bc)i
• Phép chia số phức: (với z2 ≠ 0)
- Chú ý :
• Với mọi số thực k và mọi số phức z = a + bi thì:
k(a + b)i = ka + kbi
• Với mọi số phức: 0z = 0
• Phép cộng và phép nhân các số phức có tất cả các tính chất của phép cộng và phép nhân của số thực.
• i4k = 1; i4k + 1 = i; i4k + 2 = -1; i4k + 3 = -i
Ví dụ 1: Cho số phức z = 2 + 5i . Tìm số phức w = iz + z−.
A. w = 7 - 3i. B. w = -3 - 3i. C. w = 3 = 3i. D. w = -7 - 7i.
Lời giải:
Ta có: ⇔ w = iz + z− = (-5 + 2) + (2 - 5)i = -3 - 3i.
Vậy chọn đáp án B.
Ví dụ 2: Cho số phức z = (1 - 6i) - (2 - 4i). Phần thực, phần ảo của z lần lượt là
A. -1; -2. B. 1; 2. C. 2;1. D. – 2;1.
Lời giải:
Ta có : z = (1 - 6i) - (2 - 4i) = -1 -2i
Vậy chọn đáp án A.
Ví dụ 3: Cho số phức z = (2 + i)(1 - i) + 1 + 3i. Tính môđun của z.
A. 4√2. B. √13. C. 2√2. D. 2√5.
Lời giải:
Ta có: z = (2 + i)(1 - i) + 1 + 3i = (2.1 + 1.1) + (-1.2 + 1.1)i + 1 + 3i = 4 + 2i
. Vậy chọn đáp án D.
Lý thuyết Phép chia số phức
A. Tóm tắt lý thuyết
Cho hai số phức z1 = a + bi và z2 = c + di thì:
- Số phức nghịch đảo của z = a + bi ≠ 0:
- (với z2 ≠ 0)
Ví dụ 1: Số phức nghịch đảo của có phần ảo là:
A. 1 B. 1/2 C. -1 D. -1/2
Lời giải:
Chọn D.
Ta có:
Ví dụ 2: Phần thực của số phức bằng
A. 16/17 B. 3/4 C. -13/17 D. -3/4
Lời giải:
Chọn A.
Ta có:
Ví dụ 3: Số phức có phần thực là
A. 3 B. 9/13 C. 2 D. -3
Lời giải:
Chọn C.
Ta có:
⇒ Phần thực của z là: 2
Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi tốt nghiệp THPT khác:
- Dạng đại số của số phức
- Tìm số phức z thỏa mãn điều kiện cho trước
- Căn bậc hai của số phức và phương trình bậc hai
- Dạng lượng giác của số phức
- Tập hợp điểm biểu diễn số phức
- Bài tập số phức tổng hợp
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Lớp 12 Kết nối tri thức
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT
- Lớp 12 Chân trời sáng tạo
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST
- Lớp 12 Cánh diều
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều