100 bài tập trắc nghiệm Toán lớp 9 Chương 2 Hình học có đáp án
100 bài tập trắc nghiệm Toán lớp 9 Chương 2 Hình học có đáp án
Tài liệu 100 bài tập trắc nghiệm Toán lớp 9 Chương 2 Hình học có đáp án chọn lọc, có đáp án được biên soạn theo bài học với các dạng bài tập cơ bản, nâng cao đầy đủ các mức độ: nhận biết, thông hiểu, vận dụng, vận dụng cao. Hi vọng với bộ trắc nghiệm Toán lớp 9 này sẽ giúp học sinh ôn luyện để đạt điểm cao trong các bài thi môn Toán 9 và kì thi tuyển sinh vào lớp 10.
- Trắc nghiệm Sự xác định đường tròn. Tính chất đối xứng của đường tròn có đáp án
- Trắc nghiệm Sự xác định đường tròn. Tính chất đối xứng của đường tròn có đáp án (phần 2)
- Trắc nghiệm Đường kính và dây của đường tròn có đáp án
- Trắc nghiệm Đường kính và dây của đường tròn có đáp án (phần 2)
- Trắc nghiệm Dấu hiệu nhận biết tiếp tuyến của đường tròn có đáp án
- Trắc nghiệm Vị trí tương đối của đường thẳng và đường tròn có đáp án
- Trắc nghiệm Tính chất của hai tiếp tuyến cắt nhau có đáp án
- Trắc nghiệm Vị trí tương đối của hai đường tròn có đáp án
- Bài tập về Đường tròn lớp 9 nâng cao có lời giải
- Bài tập trắc nghiệm Chương 2 Hình học 9 có đáp án
Trắc nghiệm Sự xác định đường tròn. Tính chất đối xứng của đường tròn có đáp án
Câu 1: Số tâm đối xứng của đường tròn là:
A. 1
B. 2
C. 3
D. 4
Lời giải:
Đường tròn là hình có tâm đối xứng. Tâm đường tròn là tâm đối xứng của đường tròn đó.
Nên đường tròn có một tâm đối xứng duy nhất là tâm của đường tròn.
Đáp án cần chọn là: A
Câu 2: Tâm đối xứng của đường tròn là:
A. Điểm bất kì bên trong đường tròn
B. Điểm bất kì bên ngoài đường tròn
C. Điểm bất kì trên đường tròn
D. Tâm của đường tròn
Lời giải:
Đường tròn là hình có tâm đối xứng. Tâm đường tròn là tâm đối xứng của đường tròn đó.
Nên đường tròn có một tâm đối xứng duy nhất là tâm của đường tròn.
Đáp án cần chọn là: D
Câu 3: Khẳng định nào sau đây là đúng khi nói về trục đối xứng của đường tròn?
A. Đường tròn không có trục đối xứng
B. Đường tròn có duy nhất một trục đối xứng là đường kính.
C. Đường tròn có hai trục đối xứng là hai đường kính vuông góc với nhau.
D. Đường tròn có vô số trục đối xứng là đường kính
Lời giải:
Đường tròn là hình có trục đối xứng. Bất kì đường kính nào cũng là trục đối xứng của đường tròn
Nên đường tròn có vô số trục đối xứng
Đáp án cần chọn là: D
Câu 4: Điền từ thích hợp vào chỗ trống: “Đường tròn có … trục đối xứng”
A. 1
B. 2
C. Vô số
D. 3
Lời giải:
Đường tròn là hình có trục đối xứng. Bất kì đường kính nào cũng là trục đối xứng của đường tròn
Nên đường tròn có vô số trục đối xứng
Đáp án cần chọn là: C
Câu 5: Tâm đường tròn ngoại tiếp tam giác là:
A. Giao của ba đường phân giác
B. Giao của ba đường trung trực
C. Giao của ba đường cao
D. Giao của ba đường trung tuyến.
Lời giải:
Tâm đường tròn ngoại tiếp tam giác là giao điểm của ba đường trung trực của tam giác đó.
Đáp án cần chọn là: B
Câu 6: Giao ba đường trung trực của tam giác là:
A. Tâm đường tròn ngoại tiếp tam giác (đường tròn đi qua ba đỉnh của tam giác)
B. Tâm đường tròn nội tiếp tam giác (đường tròn tiếp xúc với ba cạnh của tam giác)
C. Tâm đường tròn cắt ba cạnh của tam giác
D. Tâm đường tròn đi qua 1 đỉnh và cắt hai cạnh của tam giác
Lời giải:
Tâm đường tròn ngoại tiếp tam giác là giao điểm của ba đường trung trực của tam giác đó.
Đáp án cần chọn là: A
Câu 7: Cho đường tròn (O; R) và điểm M bất kỳ, biết rằng OM = R. Chọn khẳng định đúng?
A. Điểm M nằm ngoài đường tròn
B. Điểm M nằm trên đường tròn
C. Điểm M nằm trong đường tròn
D. Điểm M không thuộc đường tròn
Lời giải:
Cho điểm M và đường tròn (O; R) ta so sánh khoảng cách OM với bán kính R để xác định vị trí tương đối theo bảng sau:
Đáp án cần chọn là: B
Câu 8: Cho đường tròn (O; R) và điểm M bất kỳ, biết rằng OM > R. Chọn khẳng định đúng?
A. Điểm M nằm ngoài đường tròn
B. Điểm M nằm trên đường tròn
C. Điểm M nằm trong đường tròn
D. Điểm M không thuộc đường tròn
Lời giải:
Vì OM > R nên điểm M nằm bên ngoài đường tròn
Đáp án cần chọn là: A
Câu 9: Xác định tâm và bán kính của đường tròn đi qua cả bốn đỉnh của hình vuông ABCD cạnh a.
Lời giải:
Gọi O là giao hai đường chéo của hình vuông ABCD. Khi đó theo tính chất của hình vuông ta có OA = OB = OC = OD nên O là tâm đường tròn ngoại tiếp hình vuông ABCD, bán kính R = OA =
Xét tam giác ABC vuông cân tại B ta có:
Vậy tâm đường tròn ngoại tiếp hình vuông ABCD cạnh a là giao điểm hai đường chéo, bán kính là
Đáp án cần chọn là: C
Câu 10: Tính bán kính R của đường tròn đi qua cả bốn đỉnh của hình vuông ABCD cạnh 3cm
Lời giải:
Gọi O là giao hai đường chéo của hình vuông ABCD. Khi đó theo tính chất của hình vuông ta có OA = OB = OC = OD nên O là tâm đường tròn ngoại tiếp hình vuông ABCD, bán kính
Xét tam giác ABC vuông cân tại B ta có AC2 = AB2 + BC2 = 32 + 32 = 18
Đáp án cần chọn là: B
Trắc nghiệm Đường kính và dây của đường tròn có đáp án
Câu 1: Cho đường tròn (O) đường kính AB và dây CD không đi qua tâm. Khẳng định nào sau đây là đúng?
A. AB > CD
B. AB = CD
C. AB < CD
D. AB ≤ CD
Lời giải:
Trong các dây của một đường tròn, dây lớn nhất là đường kính.
Đáp án cần chọn là: A
Câu 2: “Trong các dây của một đường tròn, đường kính là dây có độ dài…” Cụm từ thích hợp điền vào chỗ trống là:
A. nhỏ nhất
B. lớn nhất
C. bằng 10cm
D. bằng tổng hai dây bất kì
Lời giải:
Trong các dây của một đường tròn, đường kính là dây có độ dài lớn nhất.
Đáp án cần chọn là: B
Câu 3: Cho đường tròn (O) có hai dây AB, CD không đi qua tâm. Biết khoảng cách từ tâm đến hai dây là bằng nhau. Kết luận nào sau đây là đúng?
A. AB > CD
B. AB = CD
C. AB < CD
D. AB // CD
Lời giải:
Trong một đường tròn, hai dây cách đều tâm thì bằng nhau
Đáp án cần chọn là: B
Câu 4: Cho đường tròn (O) có hai dây AB, CD không đi qua tâm. Biết khoảng cách từ tâm O đến dây AB lớn hơn khoảng cách từ tâm O đến dây CD. Kết luận nào sau đây là đúng?
A. AB > CD
B. AB = CD
C. AB < CD
D. AB // CD
Lời giải:
Trong một đường tròn: Dây nào gần tâm hơn thì dây đó lớn hơn
Từ đề bài ta thấy dây CD gần tâm hơn dây AB nên AC > AB
Đáp án cần chọn là: C
Câu 5: “Trong một đường tròn, đường kính đi qua trung điểm của một dây không đi qua tâm thì… với dây ấy”. Điền vào dấu… cụm từ thích hợp.
A. nhỏ hơn
B. bằng
C. song song
D. vuông góc
Lời giải:
Trong một đường tròn, đường kính đi qua trung điểm của một dây không đi qua tâm thì vuông góc với dây ấy.
Đáp án cần chọn là: D
Câu 6: “Trong một đường tròn, đường kính vuông góc với dây thì … của dây ấy”. Điền vào dấu… cụm từ thích hợp.
A. đi qua trung điểm
B. đi qua giao điểm của dây ấy với đường tròn
C. đi qua điểm bất kì
D. đi qua điểm chia dây ấy thành hai phần có tỉ lệ 2 : 3
Lời giải:
Trong một đường tròn, đường kính vuông góc với dây thì đi qua trung điểm của dây ấy
Đáp án cần chọn là: A
Câu 7: Chọn khẳng định sai trong các khẳng định sau. Trong hai dây của một đường tròn.
A. Dây nào lớn hơn thì dây đó xa tâm hơn
B. Dây nào nhỏ hơn thì dây đó xa tâm hơn
C. Dây nào gần tâm hơn thì dây đó lớn hơn
D. Hai dây bằng nhau thì cách đều tâm
Lời giải:
- Trong một đường tròn:
+ Hai dây bằng nhau thì cách đều tâm
- Trong hai dây của một đường tròn:
+ Dây nào lớn hơn thì dây đó gần tâm hơn
+ Dây nào gần tâm hơn thì dây đó lớn hơn
Nên phương án B, C, D đúng
Đáp án cần chọn là: A
Câu 8: Chọn khẳng định đúng trong các khẳng định sau. Trong hai dây của một đường tròn.
A. Dây nào lớn hơn thì dây đó xa tâm hơn
B. Hai dây đi qua tâm thì vuông góc với nhau
C. Dây nào gần tâm hơn thì dây đó nhỏ hơn
D. Hai dây cách đều tâm thì bằng nhau
Lời giải:
- Trong một đường tròn:
+ Hai dây bằng nhau thì cách đều tâm
- Trong hai dây của một đường tròn:
+ Dây nào lớn hơn thì dây đó gần tâm hơn
+ Dây nào gần tâm hơn thì dây đó lớn hơn
Nên phương án A, B, C sai; D đúng
Đáp án cần chọn là: D
Câu 9: Cho đường tròn (O) có bán kính R = 5cm. Khoảng cách từ tâm đến dây AB là 3cm. Tính độ dài dây AB.
A. AB = 6cm
B. AB = 8cm
C. AB = 10cm
D. AB = 12cm
Lời giải:
Kẻ OH ⊥ AB tại H suy ra H là trung điểm AB
Xét tam giác OHB vuông tại H có OH = 3cm; OB = 5cm. Theo định lý Pytago ta có:
Mà H là trung điểm của AB nên AB = 2HB = 8cm
Vậy AB = 8cm
Đáp án cần chọn là: B
Câu 10: Cho đường tròn (O) có bán kính R = 6,5cm. Khoảng cách từ tâm đến dây AB là 2,5cm. Tính độ dài dây AB.
A. AB = 6cm
B. AB = 8cm
C. AB = 10cm
D. AB = 12cm
Lời giải:
Kẻ OH AB tại H suy ra H là trung điểm AB
Xét tam giác OHB vuông tại H có OH = 2,5cm; OB = 6,5cm. Theo định lý Pytago ta có:
Mà H là trung điểm của AB nên AB = 2HB = 12cm
Vậy AB = 12cm
Đáp án cần chọn là: D
Xem thêm bài tập trắc nghiệm Toán lớp 9 có lời giải hay khác:
- Bộ bài tập trắc nghiệm Toán lớp 9 Chương 1 Đại số có đáp án
- Bộ bài tập trắc nghiệm Toán lớp 9 Chương 2 Đại số có đáp án
- Bộ bài tập trắc nghiệm Toán lớp 9 Chương 1 Hình học có đáp án
- Bộ bài tập trắc nghiệm Toán lớp 9 Chương 3 Đại số có đáp án
- Bộ bài tập trắc nghiệm Toán lớp 9 Chương 4 Đại số có đáp án
- Bộ bài tập trắc nghiệm Toán lớp 9 Chương 3 Hình học có đáp án
- Bộ bài tập trắc nghiệm Toán lớp 9 Chương 4 Hình học có đáp án
Tủ sách VIETJACK luyện thi vào 10 cho 2k10 (2025):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Chuyên đề: Lý thuyết - Bài tập Toán lớp 9 Đại số và Hình học có đáp án có đầy đủ Lý thuyết và các dạng bài được biên soạn bám sát nội dung chương trình sgk Đại số 9 và Hình học 9.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Lớp 9 Kết nối tri thức
- Soạn văn 9 (hay nhất) - KNTT
- Soạn văn 9 (ngắn nhất) - KNTT
- Giải sgk Toán 9 - KNTT
- Giải sgk Khoa học tự nhiên 9 - KNTT
- Giải sgk Lịch Sử 9 - KNTT
- Giải sgk Địa Lí 9 - KNTT
- Giải sgk Giáo dục công dân 9 - KNTT
- Giải sgk Tin học 9 - KNTT
- Giải sgk Công nghệ 9 - KNTT
- Giải sgk Hoạt động trải nghiệm 9 - KNTT
- Giải sgk Âm nhạc 9 - KNTT
- Giải sgk Mĩ thuật 9 - KNTT
- Lớp 9 Chân trời sáng tạo
- Soạn văn 9 (hay nhất) - CTST
- Soạn văn 9 (ngắn nhất) - CTST
- Giải sgk Toán 9 - CTST
- Giải sgk Khoa học tự nhiên 9 - CTST
- Giải sgk Lịch Sử 9 - CTST
- Giải sgk Địa Lí 9 - CTST
- Giải sgk Giáo dục công dân 9 - CTST
- Giải sgk Tin học 9 - CTST
- Giải sgk Công nghệ 9 - CTST
- Giải sgk Hoạt động trải nghiệm 9 - CTST
- Giải sgk Âm nhạc 9 - CTST
- Giải sgk Mĩ thuật 9 - CTST
- Lớp 9 Cánh diều
- Soạn văn 9 Cánh diều (hay nhất)
- Soạn văn 9 Cánh diều (ngắn nhất)
- Giải sgk Toán 9 - Cánh diều
- Giải sgk Khoa học tự nhiên 9 - Cánh diều
- Giải sgk Lịch Sử 9 - Cánh diều
- Giải sgk Địa Lí 9 - Cánh diều
- Giải sgk Giáo dục công dân 9 - Cánh diều
- Giải sgk Tin học 9 - Cánh diều
- Giải sgk Công nghệ 9 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 9 - Cánh diều
- Giải sgk Âm nhạc 9 - Cánh diều
- Giải sgk Mĩ thuật 9 - Cánh diều