Công thức về phép đối xứng tâm hay nhất | Toán lớp 11
Công thức về phép đối xứng tâm hay nhất
Công thức về phép đối xứng tâm hay nhất Toán lớp 11 sẽ giúp học sinh nắm vững công thức, biết cách làm bài tập từ đó có kế hoạch ôn tập hiệu quả để đạt kết quả cao trong các bài thi Toán 11.
Bài viết Công thức về phép đối xứng tâm hay nhất gồm 4 phần: Lý thuyết, Công thức, Ví dụ minh họa và Bài tập tự luyện có lời giải chi tiết giúp học sinh dễ học, dễ nhớ Công thức về phép đối xứng tâm hay nhất Toán 11.
1. Lí thuyết
* Định nghĩa: Cho điểm I. Phép biến hình biến điểm I thành chính nó, biến mỗi điểm M khác I thành M’ sao cho I là trung điểm của MM’ được gọi là phép đối xứng tâm I.
Điểm I được gọi là tâm đối xứng.
Phép đối xứng tâm I thường được kí hiệu là ĐI.
Từ định nghĩa suy ra: M’ = ĐI(M)
* Tính chất:
- Phép đối xứng tâm bảo toàn khoảng cách giữa hai điểm bất kì.
- Biến đường thẳng thành đường thẳng song song hoặc trùng với nó.
- Biến một vectơ thành 1 vectơ đối với nó.
- Biến tam giác thành tam giác bằng nó.
- Biến một góc thành một góc bằng nó.
- Biến đường tròn thành đường tròn có cùng bán kính.
2. Công thức
Trong hệ tọa độ Oxy, cho I(a;b) và M(x;y). Ta có: ĐI(M) = M’(x’; y’) có biểu thức tọa độ:
Với tâm đối xứng là gốc tọa độ O(0; 0), ta có M’(x’; y’) = ĐO[M(x; y)] thì ANH
3. Ví dụ minh họa
Ví dụ 1: Cho điểm A(-2;3), đường thẳng d: x − 2y + 5 = 0 và đường tròn (C): (x – 1)2 + (y + 2)2 = 4.
a) Tìm ảnh của điểm A qua phép đối xứng tâm O.
b) Tìm ảnh của đường thẳng d qua phép đối xứng tâm O.
c) Tìm ảnh của đường tròn qua phép đối xứng tâm O.
Lời giải
a) Gọi A’ là ảnh của A qua phép đối xứng tâm O
Ta có: A’ = ĐO(A) suy ra A’(2; -3).
b) Gọi d’ là ảnh của d qua phép đối xứng tâm O
Ta có: d’ song song hoặc trùng với d. Phương trình d’ có dạng: x − 2y + c = 0.
Lấy điểm M(-5;0)∈ d. Gọi M’ là ảnh của M qua phép đối xứng tâm O, khi đó M' ∈ d' .
Vậy phương trình đường thẳng d’ là: x − 2y – 5 = 0.
c) Đường tròn (C) có tâm I(1;-2) và bán kính R = 2.
Gọi (C’) là ảnh của (C) qua phép đối xứng tâm O
Khi đó (C’) có bán kính R = 2 và tâm I’ là ảnh của I qua phép đối xứng tâm O.
Vậy phương trình đường tròn (C’): (x + 1)2 + (y - 2)2 = 4.
Ví dụ 2: Cho điểm I(3; -4) và đường thẳng d: 5x + 2y – 3 = 0. Viết phương trình d’ là ảnh của d qua phép đối xứng tâm I.
Lời giải
Cách 1:
Vì d’ là ảnh của d qua phép đối xứng tâm I
Nên d’ song song hoặc trùng với d. Phương trình d’ có dạng: 5x + 2y + c = 0.
Lấy điểm M(1;-1) ∈ d . Gọi M’ là ảnh của M qua phép đối xứng tâm I, khi đó M' ∈ d' .
Vậy phương trình đường thẳng d’: 5x + 2y – 11 = 0.
Cách 2:
Lấy M(x,y) bất kì thuộc d. Gọi M’ là ảnh của M qua phép đối xứng tâm I, khi đó M' ∈ d' .
Vậy phương trình đường thẳng d’ là: 5x + 2y − 11 = 0.
4. Bài tập tự luyện
Câu 1. Trong mặt phẳng tọa độ Oxy cho phép đối xứng tâm O(0; 0) biến điểm M(-3; 2) thành điểm M’ có tọa độ là:
A. M’(-4; 2) B. M’(2; -3) C. M’(-2; 3) D. M’(2; 3)
Câu 2. Trong mặt phẳng tọa độ Oxy cho đường thẳng d: 3x – 2y – 1 = 0. Ảnh của đường thẳng d qua phép đối xứng tâm O có phương trình là:
A. 3x + 2y + 1 = 0 B. -3x + 2y – 1 = 0
C. 3x + 2y – 1 = 0 D. 3x – 2y – 1 = 0
Câu 3. Trong mặt phẳng tọa độ Oxy, tìm phương trình đường tròn (C') là ảnh của đường tròn (C): x2 + y2 = 1 qua phép đối xứng tâm I(1;0).
A. (C'): (x – 2)2 + y2 = 1 B. (C'): (x + 2)2 + y2 = 1
C. (C'): x2 + (y + 2)2 = 1 D. (C'): x2 + (y – 2)2 = 1
Đáp án 1B, 2B, 3A
5. Bài tập bổ sung
Bài 1. Trong mặt phẳng Oxy, ảnh của điểm A(5; 3) qua phép đối xứng tâm I(4; 1) là?
Bài 2. Cho I(2;−3), d: 3x + 2y – 1 = 0. Viết phương trình d’ là ảnh của d qua phép đối xứng tâm I.
Bài 3. Cho đường tròn (C): (x + 2)2 + (y − 1)2 = 1. Viết phương trình (C’) là ảnh của (C) qua phép đối xứng tâm O(0; 0).
Bài 4. Phép đối xứng tâm O(0; 0) biến điểm A(m;-m) thành điểm A' nằm trên đường thẳng x - y + 6 = 0. Tìm m.
Bài 5. Cho A(-1; 3), d: x − 2y + 3 = 0. Tìm ảnh của điểm A và d qua phép đối xứng tâm O.
Xem thêm các Công thức Toán lớp 11 quan trọng hay khác:
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Đề thi lớp 1 (các môn học)
- Đề thi lớp 2 (các môn học)
- Đề thi lớp 3 (các môn học)
- Đề thi lớp 4 (các môn học)
- Đề thi lớp 5 (các môn học)
- Đề thi lớp 6 (các môn học)
- Đề thi lớp 7 (các môn học)
- Đề thi lớp 8 (các môn học)
- Đề thi lớp 9 (các môn học)
- Đề thi lớp 10 (các môn học)
- Đề thi lớp 11 (các môn học)
- Đề thi lớp 12 (các môn học)
- Giáo án lớp 1 (các môn học)
- Giáo án lớp 2 (các môn học)
- Giáo án lớp 3 (các môn học)
- Giáo án lớp 4 (các môn học)
- Giáo án lớp 5 (các môn học)
- Giáo án lớp 6 (các môn học)
- Giáo án lớp 7 (các môn học)
- Giáo án lớp 8 (các môn học)
- Giáo án lớp 9 (các môn học)
- Giáo án lớp 10 (các môn học)
- Giáo án lớp 11 (các môn học)
- Giáo án lớp 12 (các môn học)