Trọn bộ Công thức Toán 11 Học kì 1, Học kì 2 (quan trọng, cả năm)
Nhằm mục đích giúp học sinh dễ dàng nhớ và nắm vững các công thức Toán 11 sách mới Kết nối tri thức, Chân trời sáng tạo, Cánh diều, tài liệu trọn bộ công thức Toán 11 Học kì 1, Học kì 2 Đại số và Hình học đầy đủ công thức quan trọng, lý thuyết và bài tập tự luyện giúp học sinh lớp 11 vận dụng và làm bài tập thật tốt môn Toán 11.
Trọn bộ Công thức Toán 11 Học kì 1, Học kì 2 (quan trọng, cả năm)
Công thức Toán 11 Kết nối tri thức
Công thức Toán 11 Chân trời sáng tạo
Công thức Toán 11 Cánh diều
Công thức Toán 11 Đại số
Công thức Toán 11 Hình học
Công thức Toán 11 Học kì 1
Công thức Toán 11 Dãy số - Cấp số cộng và cấp số nhân
Công thức số hạng tổng quát và tính tổng n số hạng đầu của cấp số cộng
Công thức Số hạng tổng quát và tính tổng n số hạng đầu của cấp số nhân
Công thức Toán 11 Giới hạn. Hàm số liên tục
Định lí về giới hạn hữu hạn và một số giới hạn cơ bản của dãy số
Công thức hàm số liên tục tại một điểm, liên tục trên một khoảng hoặc một đoạn
Công thức Toán 11 Học kì 2
Công thức Toán 11 Hàm số mũ và hàm số lôgarit
Công thức về phép tính lũy thừa với số mũ nguyên, số mũ hữu tỉ và số thực
Công thức tính lôgarit của một tích, một thương, một lũy thừa
Công thức nghiệm của bất phương trình mũ, bất phương trình lôgari
Công thức Toán 11 Thống kê & Xác suất
Công thức xác định số trung bình cộng của mẫu số liệu ghép nhóm
Công thức xác định trung vị, tứ phân vị của mẫu số liệu ghép nhóm
Công thức Toán 11 Đạo hàm
Lưu trữ: Công thức Toán 11 (sách cũ)
Chương 1: Hàm số lượng giác và phương trình lượng giác
Chương 2: Tổ hợp - Xác suất
Chương 1: Phép dời hình và phép đồng dạng trong mặt phẳng
Chương 3: Dãy số - Cấp số cộng và cấp số nhân
Chương 2: Đường thẳng và mặt phẳng trong không gian. Quan hệ song song
Công thức tính giá trị nhỏ nhất – giá trị lớn nhất của hàm số lượng giác
1. Lí thuyết
a) Sử dụng tính bị chặn của hàm số lượng giác
-1 ≤ sin[u(x)] ≤ 1; 0 ≤ sin2[u(x)] ≤ 1;
-1 ≤ cos[u(x)] ≤ 1; 0 ≤ cos2[u(x)] ≤ 1;
b) Dạng y = asinx + bcosx + c
Bước 1: Đưa hàm số về dạng chỉ chứa sin[u(x)] hoặc cos[u(x)]:
y = asinx + bcosx + c =
⇔ y = .sin(x + α ) + c với α thỏa mãn
Bước 2: Đánh giá -1 ≤ sin[x + α] ≤ 1 ∀x ∈ R
2. Công thức
a) Dạng y = asin[u(x)] + b hoặc y = acos[u(x)] + b
Ta có: –|a| + b ≤ y ≤ |a| + b
Hàm số có giá trị nhỏ nhất là –|a| + b và giá trị lớn nhất là |a| + b.
b) Dạng y = asin2[u(x)] + b ; y = a|sin[u(x)]| + b;
Dạng y = acos2[u(x)] + b; y = a|cos[u(x)]| + b (với a khác 0)
+ Trường hợp 1: a > 0. Ta có: b ≤ y ≤ a + b .
Hàm số có giá trị nhỏ nhất là b và giá trị lớn nhất là a + b.
+ Trường hợp 2: a < 0. Ta có: a + b ≤ y ≤ b .
Hàm số có giá trị nhỏ nhất là a + b và giá trị lớn nhất là b.
c) Dạng y = asinx + bcosx + c
Ta có:
Hàm số có giá trị nhỏ nhất là và giá trị lớn nhất là
Công thức giải phương trình lượng giác cơ bản
1. Lí thuyết
* Công thức nghiệm cơ bản
a) Phương trình sin x = m
Trường hợp 1: |m| > 1. Phương trình vô nghiệm.
Trường hợp 2: |m| ≤ 1. Phương trình có nghiệm.
- Nếu m biểu diễn được dưới dạng sin của những góc đặc biệt thì:
sinx = m ⇔ sinx = sinα ⇔
- Nếu m không biểu diễn được dưới dạng sin của những góc đặc biệt thì:
sinx = m ⇔
- Các trường hợp đặc biệt:
sinx = 0 ⇔ x = kπ (k ∈ Z)
sinx = 1 ⇔ x = + k2π (k ∈ Z)
sinx = -1 ⇔ x = - + k2π (k ∈ Z)
b) Phương trình cos x = m
Trường hợp 1: |m| > 1. Phương trình vô nghiệm.
Trường hợp 2: |m| ≤ 1 . Phương trình có nghiệm.
- Nếu m biểu diễn được dưới dạng cos của những góc đặc biệt thì:
- Nếu m không biểu diễn được dưới dạng cos của những góc đặc biệt thì:
- Các trường hợp đặc biệt:
cosx = 0 ⇔ x = + kπ (k ∈ Z)
cosx = 1 ⇔ x = k2π (k ∈ Z)
cosx = -1 ⇔ x = π + k2π (k ∈ Z)
c) Phương trình: tan x = m. Điều kiện: x ≠ + kπ (k ∈ Z)
- Nếu m biểu diễn được dưới dạng tan của những góc đặc biệt thì:
tan x = m ⇔ tan x = tan α ⇔ x = α + kπ (k ∈ Z)
- Nếu m không biểu diễn được dưới dạng tan của những góc đặc biệt thì:
tan x = m ⇔ x = αrctan m + kπ (k ∈ Z)
d) Phương trình: cot x = m. Điều kiện: x ≠ kπ (k ∈ Z)
- Nếu m biểu diễn được dưới dạng cot của những góc đặc biệt thì:
cot x = m ⇔ cot x = cot α ⇔ x = α + kπ (k ∈ Z)
- Nếu m không biểu diễn được dưới dạng cot của những góc đặc biệt thì:
cot x = m ⇔ x = αrccot m + kπ (k ∈ Z)
* Mở rộng công thức nghiệm, với u(x) và v(x) là hai biểu thức của x.
cos u(x) = cos v(x) ⇔ u(x) = + k2π (k ∈ Z)
tan u(x) = tan v(x) ⇔ u(x) = v(x) + kπ (k ∈ Z)
cot u(x) = cot v(x) ⇔ u(x) = v(x) + kπ (k ∈ Z)
2. Công thức
Khi đã cho số m, ta có thể tìm các giá trị arcsin m, arccos m, arctan m, arccot m bằng máy tính bỏ túi với các phím sin-1; cos-1; tan-1.
Bước 1. Chỉnh chế độ rad hoặc độ
- Muốn tìm số đo radian:
ta ấn qw4 (đối với Casio fx - 570VN)
ta ấn qw22 (đối với Casio fx - 580VN X)
- Muốn tìm số đo độ:
ta ấn qw3 (đối với Casio fx - 570VN)
ta ấn qw21 (đối với Casio fx - 580VN X)
Bước 2. Tìm số đo góc
Tìm góc α khi biết sin của góc đó bằng m, ta ấn lần lượt qj m =.
Tương tự đối với cos và tan.
Chú ý: Muốn tìm góc α khi biết cot của góc đó bằng m, ta ấn lần lượt ql1a m $)=.
Sau đó áp dụng công thức lượng giác để giải phương trình.
..........................
..........................
..........................
Trên đây là tóm lược một số nội dung có trong tổng hợp công thức Toán lớp 11 Học kì 1 và Học kì 2, mời quí bạn đọc vào từng bài để xem đầy đủ, chi tiết!
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Đề thi lớp 1 (các môn học)
- Đề thi lớp 2 (các môn học)
- Đề thi lớp 3 (các môn học)
- Đề thi lớp 4 (các môn học)
- Đề thi lớp 5 (các môn học)
- Đề thi lớp 6 (các môn học)
- Đề thi lớp 7 (các môn học)
- Đề thi lớp 8 (các môn học)
- Đề thi lớp 9 (các môn học)
- Đề thi lớp 10 (các môn học)
- Đề thi lớp 11 (các môn học)
- Đề thi lớp 12 (các môn học)
- Giáo án lớp 1 (các môn học)
- Giáo án lớp 2 (các môn học)
- Giáo án lớp 3 (các môn học)
- Giáo án lớp 4 (các môn học)
- Giáo án lớp 5 (các môn học)
- Giáo án lớp 6 (các môn học)
- Giáo án lớp 7 (các môn học)
- Giáo án lớp 8 (các môn học)
- Giáo án lớp 9 (các môn học)
- Giáo án lớp 10 (các môn học)
- Giáo án lớp 11 (các môn học)
- Giáo án lớp 12 (các môn học)