Sách bài tập Toán 7 Bài 7: Định lí
Sách bài tập Toán 7 Bài 7: Định lí
Bài 39 trang 111 sách bài tập Toán 7 Tập 1: Vẽ hình và viết giả thiết, kết luận của các định lý sau:
a. Nếu một đường thẳng cắt một trong hai đường thẳng song song thì nó cắt đường thẳng kia
b. Nếu một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó vuông góc với đường thẳng kia.
Lời giải:
Bài 40 trang 112 sách bài tập Toán 7 Tập 1: Vẽ hình và viết giả thiết, kết luận của các định lý sau:
a. Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì chúng song song với nhau
b. Hai đường thẳng song song với một đường thẳng thứ ba thì chúng song song với nhau
Lời giải:
Bài 41 trang 112 sách bài tập Toán 7 Tập 1: Với hai góc kề bù ta có định lý sau:
Hai tia phân giác của hai góc kề bù tạo thành một góc vuông
a. Hãy vẽ hai góc xOy và yOx’ kề bù, tia phân giác Ot của góc xOy, tia phân giác Ot’ của góc yOx’ và gọi số đo của góc xOy là mº.
b. Hãy viết giả thiết và kết luận của định lí
c. Hãy điền vào chỗ trống và sắp xếp bốn câu sau đây một cách hợp lí để chứng minh định lí trên.
∠(tOy) = (1/2). mo vì…
∠(t'Oy) = (1/2 )(180o - mo)vì…
∠(tOt') = 90o vì…
∠(x'Oy) = (180o - mo) vì…
Lời giải:
a. Hình vẽ:
b.
c. Chứng minh:
1) ∠tOy = 1/2. ∠xOy = 1/2. mo (Vì Ot là tia phân giác của góc xOy)
4) ∠x'Oy = 180o - ∠xOy = 180o - mo (Vì ∠x'Oy và ∠xOy kề bù)
2) ⇒ ∠t'Oy = 1/2. ∠x'Oy = 1/2. (180o - mo) (Vì Ot’ là phân giác của ∠x'Oy)
3) ⇒ ∠tOt' = ∠tOy + ∠t'Oy = 1/2. mo + 1/2. (180o - mo) = 90o.
Kết luận: Vậy hai tia phân giác của hai góc kề bù tạo thành góc vuông.
Bài 42 trang 112 sách bài tập Toán 7 Tập 1: Điền vào chỗ trống để chứng minh bài toán sau:
Gọi DI là tia phân giác của góc MDN. Gọi EDK là góc đối đỉnh của góc IDM. Chứng minh rằng
Chừng minh:
∠(IDM) =∠(IDN) (vì…) (1)
∠(IDM) =∠(EDK) (vì…) (2)
Từ (1) và (2) suy ra...
Đó là điều phải chứng minh
Lời giải:
Chứng minh:
∠(IDM) =∠(IDN) (vì DI là tia phân giác của ∠(MDN) (1)
∠(IDM) =∠(EDK) (vì 2 góc đối đỉnh) (2)
Từ (1) và (2) suy ra ∠(EDK) =∠(IDN) (điều phải chứng minh)
Bài 43 trang 112 sách bài tập Toán 7 Tập 1: Hãy chứng minh định lí:
Nếu một đường thẳng cắt hai đường thẳng song song thì hai góc đồng vị bằng nhau.
Hướng dẫn: chứng minh tương tự bài tập 30.
Lời giải:
Chứng minh
Giả sử ∠(A1) ≠ ∠(B1)
Qua B kẻ đường thẳng xy sao cho ∠(ABy) = ∠(A1)
Mà hai góc này ở vị trí so le trong nên theo dấu hiệu của hai đường thẳng song song, ta có xy //a
+) Qua điểm B ta kẻ được hai đường thẳng b và xy cùng song song với đường thẳng a. Theo tiên đề Ơ- clit suy ra đường thẳng xy trùng với đường thẳng b.
Bài 44 trang 113 sách bài tập Toán 7 Tập 1: Chứng minh rằng:
Nếu hai góc nhọn xOy và x’Oy’ có Ox// O’x’; Oy//O’y’ thì ∠(xOy) = ∠(x'O'y')
Hướng dẫn: sử dụng tính chất của hai đường thẳng song song (bài 5)
Lời giải:
Chứng minh:
Vẽ đường thẳng OO’
Vì Ox // O’x’ nên hai góc đồng vị ∠(O1) và ∠(O'1) bằng nhau
Suy ra: ∠(O1) = ∠(O'1 ) (1)
Vì Oy // O’y’ nên hai góc đồng vị ∠(O2) và ∠(O'2) bằng nhau
Suy ra: ∠(O2) = ∠(O'2)(2)
Từ (1) và (2) suy ra: ∠(O1) - ∠(O2) =∠(O'1) - ∠(O'2)
Vậy ∠(xOy) = ∠(x'O'y')
Bài 7.1 trang 113 sách bài tập Toán 7 Tập 1: Ghi giả thiết, kết luận và chứng minh định lý: “ Hai góc cùng phụ với một góc thứ ba thì bằng nhau ”.
Lời giải:
Chứng minh:
∠B phụ với ∠A ⇒ ∠B + ∠A = 90o ⇒ ∠B = 90o - ∠A
∠C phụ với ∠A ⇒ ∠C + ∠A = 90o ⇒ ∠C = 90o - ∠A
Vậy ∠B = ∠C.
Bài 7.2 trang 113 sách bài tập Toán 7 Tập 1: Ghi giả thiết, kết luận và chứng minh định lý: “ Hai góc cùng bù với một góc thứ ba thì bằng nhau”.
Lời giải:
Chứng minh:
∠B bù với ∠A ⇒ ∠B + ∠A = 180o ⇒ ∠B = 180o - ∠A
∠C bù với ∠A ⇒ ∠C + ∠A = 180o ⇒ ∠C = 180o - ∠A
Vậy ∠B = ∠C.
Bài 7.3 trang 113 sách bài tập Toán 7 Tập 1: Ghi giả thiết, kết luận và chứng minh định lý: “ Nếu hai đường thẳng a, b cắt đường thẳng c và trong các góc tạo thành có một cặp trong cùng phía bù nhau thì a và b song song với nhau”.
Lời giải:
Chứng minh:
Xem thêm các bài giải sách bài tập Toán lớp 7 chọn lọc, chi tiết khác:
- Ôn tập chương 1
- Bài 1: Tổng ba góc của một tam giác
- Bài 2: Hai tam giác bằng nhau
- Bài 3: Trường hợp bằng nhau thứ nhất của tam giác: cạnh - cạnh - cạnh (c.c.c)
- Bài 4: Trường hợp bằng nhau thứ hai của tam giác: cạnh - góc - cạnh (c.g.c)
Lời giải bài tập lớp 7 sách mới:
- Giải bài tập Lớp 7 Kết nối tri thức
- Giải bài tập Lớp 7 Chân trời sáng tạo
- Giải bài tập Lớp 7 Cánh diều
Tủ sách VIETJACK shopee lớp 6-8 cho phụ huynh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Giải sách bài tập Toán lớp 7 hay nhất, chi tiết của chúng tôi được biên soạn bám sát nội dung SBT Toán 7 Tập 1 và Tập 2.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 7 Global Success
- Giải Tiếng Anh 7 Friends plus
- Giải sgk Tiếng Anh 7 Smart World
- Giải Tiếng Anh 7 Explore English
- Lớp 7 - Kết nối tri thức
- Soạn văn 7 (hay nhất) - KNTT
- Soạn văn 7 (ngắn nhất) - KNTT
- Giải sgk Toán 7 - KNTT
- Giải sgk Khoa học tự nhiên 7 - KNTT
- Giải sgk Lịch Sử 7 - KNTT
- Giải sgk Địa Lí 7 - KNTT
- Giải sgk Giáo dục công dân 7 - KNTT
- Giải sgk Tin học 7 - KNTT
- Giải sgk Công nghệ 7 - KNTT
- Giải sgk Hoạt động trải nghiệm 7 - KNTT
- Giải sgk Âm nhạc 7 - KNTT
- Lớp 7 - Chân trời sáng tạo
- Soạn văn 7 (hay nhất) - CTST
- Soạn văn 7 (ngắn nhất) - CTST
- Giải sgk Toán 7 - CTST
- Giải sgk Khoa học tự nhiên 7 - CTST
- Giải sgk Lịch Sử 7 - CTST
- Giải sgk Địa Lí 7 - CTST
- Giải sgk Giáo dục công dân 7 - CTST
- Giải sgk Công nghệ 7 - CTST
- Giải sgk Tin học 7 - CTST
- Giải sgk Hoạt động trải nghiệm 7 - CTST
- Giải sgk Âm nhạc 7 - CTST
- Lớp 7 - Cánh diều
- Soạn văn 7 (hay nhất) - Cánh diều
- Soạn văn 7 (ngắn nhất) - Cánh diều
- Giải sgk Toán 7 - Cánh diều
- Giải sgk Khoa học tự nhiên 7 - Cánh diều
- Giải sgk Lịch Sử 7 - Cánh diều
- Giải sgk Địa Lí 7 - Cánh diều
- Giải sgk Giáo dục công dân 7 - Cánh diều
- Giải sgk Công nghệ 7 - Cánh diều
- Giải sgk Tin học 7 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 7 - Cánh diều
- Giải sgk Âm nhạc 7 - Cánh diều