Sách bài tập Toán 7 Bài 6: Tam giác cân
Sách bài tập Toán 7 Bài 6: Tam giác cân
Bài 67 trang 147 sách bài tập Toán 7 Tập 1: a, Tính góc ở đáy của một tam giác cân biết góc ở đỉnh bằng 50o,bằng ao.
b, Tính góc ở đỉnh của một tam giác cân biết góc ở đáy bằng 50o,bằng ao
Lời giải:
Bài 68 trang 147 sách bài tập Toán 7 Tập 1: Cho tam giác ABC cân tại A có ∠A= 100°. Lấy điểm M thuộc cạnh AB, điểm N thuộc cạnh AC sao cho AM = AN. Chứng minh rằng MN // BC
Lời giải:
Tổng ba góc trong một tam giác bằng 180o nên:
Bài 69 trang 147 sách bài tập Toán 7 Tập 1: Cho tam giác ABC cân tại A. Gọi M là trung điểm của AC, N là trung điểm của AB.
Chứng minh rằng BM = CN
Lời giải:
+) Do M là trung điểm của AC nên: (1)
+) Do N là trung điểm của AB nên: (2)
Lại có: AB = AC ( vì tam giác ABC cân tại A). (3)
Từ (1); (2); (3) suy ra: AN = NB = AM = MC.
+) Xét ∆ AMB và ∆ANC có:
Góc A chung
AM = AN ( chứng minh trên)
AB = AC ( vì tam giác ABC cân tại A)
Suy ra: ∆ AMB = ∆ANC ( c.g.c)
Do đó: BM = CN ( hai cạnh tương ứng).
Bài 70 trang 147 sách bài tập Toán 7 Tập 1: Cho tam giác ABC cân tại A. Lấy điểm H thuộc cạnh AC, điểm K thuộc cạnh AB sao cho AH = AK. Gọi O là giao điểm của BH và CK.
Chứng minh rằng ΔOBClà tam giác cân.
Lời giải:
+) Xét ΔABH và ΔACK, ta có:
AB = AC ( vì tam giác ABC cân tại A)
AH = AK (giả thiết)
Suy ra: ΔABH = ΔACK(c.g.c)
+ Do đó, tam giác OBC cân tại O.
Bài 71 trang 147 sách bài tập Toán 7 Tập 1: Vẽ lại hình bên vào vở rồi đặt bài toán vẽ tam giác để có hình bên.
Lời giải:
- Vẽ tam giác ABC vuông cân tại A
- Vẽ tam giác đều ABD sao cho D và C nằm trên 2 nửa mặt phẳng có bờ chứa đường thẳng AB.
- Vẽ tam giác vuông cân ADE sao cho E và B nằm trên 2 nửa mặt phẳng đối bờ chứa đường thẳng AD.
Chứng minh tam giác ACE là tam giác cân.
Bài 72 trang 147 sách bài tập Toán 7 Tập 1: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh rằng ΔADE là tam giác cân.
Lời giải:
*) Ta có: ΔABC cân tại A
BD = CE (giả thiết)
Suy ra: ΔABD = ΔACE (c.g.c)
⇒ AD = AE ( hai cạnh tương ứng)
*) Tam giác ADE có AD = AE nên tam giác này cân tại A (theo định nghĩa tam giác cân)
Bài 73 trang 147 sách bài tập Toán 7 Tập 1: Cho tam giác ABC. Tia phân giác của góc B cắt AC ở D. trên tia đối của tia BA lấy E sao cho BE = BC. Chứng minh rằng BD // EC
Lời giải:
Ta có: BD là tia phân giác của ∠ABC (giả thiết)
Suy ra: (1)
Lại có: BE = BC (giả thiết)
=>∆BEC cân tại B (theo định nghĩa)
Suy ra: ∠E= ∠BCE (tính chất tam giác cân)
∆BEC có ABC là góc ngoài đỉnh B
=>∠ABC= ∠E + ∠BCE (tính chất góc ngoài tam giác)
Suy ra: ∠ABC=2∠E
Hay ∠E = (1/2)∠ABC (2)
Từ (1) và (2) suy ra: ∠E = ∠B1 = (1/2)∠ABC
Vậy BD // CE (vì có cặp góc ở vị trí đồng vị bằng nhau)
Bài 74 trang 147 sách bài tập Toán 7 Tập 1: Tính số đo các góc của tam giác ACD như hình bên.
Lời giải:
Ta có: ∆ABC vuông cân tại A
Suy ra: ∠ACB=∠ABC=45o
Lại có: ∆BCD vuông cân tại B (BC = BD)
Suy ra: ∠BCD=∠Dtính chất tam giác cân)
Trong ∆BCD ta có ∠ABC góc ngoài tại đỉnh B
Do vậy: ∠ABC=∠BCD + ∠D (tính chất góc ngoài của tam giác)
Suy ra: ∠ABC= ∠2∠BCD
Do đó: ∠BCD = 1/2 . ∠ABC = 1/2. 45º= 22º30’
=> ∠ACD = ∠ACB + ∠BCD = 45o+22o30'=67o30'
Bài 75 trang 147 sách bài tập Toán 7 Tập 1: Cho tam giác ABC cân tại A. Vẽ điểm D sao cho A là trung điểm của BD. Tính số đo góc BCD
Lời giải:
Ta có: ∆ABC cân tại A
⇒ AB = AC và ∠B = ∠C1 (tính chất tam giác cân) (1)
Lại có: AD = AB ( do A là trung điểm BD).
Suy ra: AD = AC do đó ∆ACD cân tại A
Nên ∠D =∠C2(tính chất tam giác cân) (2)
Mà ∠BCD =∠C1+ ∠C2 (3)
Từ (1); (2) và (3) suy ra: ∠BCD =∠B +∠D (4)
Trong ∆BCD, ta có:
∠BCD +∠B +∠D =180o (tổng 3 góc trong tam giác) (5)
từ (4) và (5) suy ra : 2 ∠BCD =180° hay∠BCD =90°
Bài 76 trang 147 sách bài tập Toán 7 Tập 1: Cho tam giác ABC cân tại A có cạnh bên bằng 3cm. Gọi D là một điểm thuộc đáy BC. Qua D, kẻ cac đường thẳng song song vói các cạnh bên, chúng cắt AB và AC theo thứ tự tại F và E.
Tính tổng DE + DF
Lời giải:
Ta có: DF // AC(gt)
=> ∠D1 = ∠C (hai góc đồng vị) (1)
Lại có: ΔABC cân tại A
=> ∠B = ∠C (tính chất tam giác cân) (2)
Từ (1) và (2) suy ra: ∠B = ∠D1
Hay ΔBFD cân tại F =>BF = DF (3)
Nối AD. Xét ΔAFD và ΔDEA có:
∠ADF =∠EAD(so le trong vì DF // AC)
AD cạnh chung
∠DAF =∠ADE (so le trong vì DE // AB)
Suy ra: ΔAFD= ΔDEA(g.c.g)
Nên AF = DE (hai cạnh tương ứng) (4)
Từ(3) và (4) suy ra: DE + DF = AF + BF = AB = 3cm
Bài 77 trang 148 sách bài tập Toán 7 Tập 1: Cho tam giác đều ABC. Lấy các điểm D, E , F theo thứ tự thuộc các cạnh AB, BC và CA sao cho AD = BE = CF. Chứng minh rằng tam giác DEF là tam giác đều?
Lời giải:
Ta có: AB = AD +DB (1)
BC = BE + EC (2)
AC = AF + FC (3)
AB = AC = BC ( vì tam giác ABC là tam giác đều) (4)
AD = BE = CF ( giả thiết) (5)
Từ (1), (2), (3) và (4),(5) suy ra: BD = EC = AF
Xét ΔADF và ΔBED, ta có:
AD = BE (gt)
∠A =∠B =60o (vì tam giác ABC đều)
AF = BD (chứng minh trên)
suy ra: ΔADF= ΔBED (c.g.c)
⇒ DF=ED (hai cạnh tương ứng) (6)
Xét ΔADF và ΔCFE, ta có:
AD = CF (gt)
∠A =∠C =60o (vì tam giác ABC đều)
AF = CE (chứng minh trên)
suy ra: ΔADF= ΔCFE (c.g.c)
Nên: DF = FE (hai cạnh tương ứng) (7)
Từ (6) và (7) suy ra: DF = ED = FE
Vậy tam giác DFE đều
Bài 78 trang 148 sách bài tập Toán 7 Tập 1: Cho tam giác ABC. Các tia phân giác của các góc B và C cắt nhau ở I. Qua I kẻ đường thẳng song song với BC. Gọi giao điểm của đường thẳng này với AB, AC theo thứ tự là D,E.
Chứng minh rằng: DE = BD + CE
Lời giải:
Ta có: DI // BC (giả thiết)
Suy ra:∠I1 =∠B1(so le trong) (1)
Lại có:∠B1 =∠B2 (2)
(vì BI là tia phân giác góc ABC)
Từ (1) và (2) suy ra:∠I1 =∠B2
=>∆BDI cân tại D =>BD=DI (3)
Mà IE // BC (gt) => ∠I2 =∠C1 (so le trong) (4)
Đồng thời: ∠C1=∠C2 (vì CI là phân giác của góc ACB) (5)
Từ (4) và (5) suy ra: ∠I2=∠C2. Suy ra ∠CEI cân tại E
Suy ra: CE = EI (6)
Từ (3) và (6) suy ra: BD + CE = DI + EI = DE
Bài 79 trang 148 sách bài tập Toán 7 Tập 1: Cho đường tròn tâm O đường kính AB. Gọi M là điểm nằm trên đường tròn, tính số đo góc AMB.
Lời giải:
Nối OM, ta có:
OA = OM (bán kính đường tròn tâm O)
Nên ΔOAM cân tại O
⇒∠A =∠M1(tính chất tam giác cân)(1)
OM = OB (bán kính đường tròn tâm O)
Suy ra: ΔOBM cân tại O
⇒∠B =∠M2(tính chất tam giác cân) (2)
Trong ΔAMB ta có:
∠A + ∠AMB + ∠B = 180º (tổng ba góc trong tam giác)
⇒∠A +∠B +∠M1+∠M2 =180 (3)
Từ (1), (2) và (3) suy ra: 2(∠M1 + ∠M2)=180o
Vậy: ∠M1+∠M2=90o hay ∠(AMB) =90o
Bài 80 trang 148 sách bài tập Toán 7 Tập 1: Đặt đề toán theo hình dưới đây. Sau đó vẽ lại hình theo đề toán rồi đo goác DAE
Lời giải:
Đề toán:
Vẽ tam giác ABC đều
Vẽ tam giác ABD vuông cân tại B sao cho D và C nằm trên hai nửa mặt phẳng bờ chứa đường thẳng AB.
Vẽ tam giác ACE vuông cân tại C sao cho E và B nằm trên hai nửa mặt phẳng đối có bờ chứa đường thẳng AC
Đo ∠DAE =150o
Chứng minh:
Bài 81 trang 148 sách bài tập Toán 7 Tập 1: Chứng minh rằng tam giác ABC vẽ trên giấy kẻ ô vuông (hình dưới ) là tam giác nhọn.
Lời giải:
Nối A với D tạo thành đường chéo ô vuông
Gọi K giao điểm AC với đỉnh ô vuông, H là giao điểm DK với đường kẻ ngang ô vuông đi qua A. ( như hình vẽ)
Ta có: ΔAHK vuông cân tại H =>∠HAK =45o
ΔAHD vuông cân tại H=>∠HAD =45o
=>∠DAK =∠HAK +∠HAD =45o+45o=90o
hay ∠DAC =90o
=>∠BAC < 90o
Hình vuông có 4 góc, mỗi góc bằng 900. Từ hình vẽ suy ra: ∠ACB < 90o và ∠ABC <90o
Vậy tam giác ABC là tam giác nhọn
Bài 6.1 trang 148 sách bài tập Toán 7 Tập 1: Góc ADB trên hình bs 3 có số đo bằng
(A) 20o;
(B) 25o;
(C) 30o;
(D) 35o;
Hãy chọn phương án đúng.
Lời giải:
+) Xét tam giác ABC có AB = AC nên tam giác ABC cân tại A
+) Tam giác ACD có góc ACB là góc ngoài của tam giác nên:
+) Lại có: AC = CD ( giả thiết) nên tam giác ACD cân tại C.
Chọn đáp án B
Bài 6.2 trang 148 sách bài tập Toán 7 Tập 1: Cho tam giác ABC vuông cân tại A. Trên tia đối của tia BC lấy điểm D sao cho BD = BA. Tính số đo góc ADB
Lời giải:
+) Do tam giác ABC vuông cân tại A nên:
+) Tam giác ABD có AB = BD nên tam giác ABD cân tại B.
+) Tam giác ABD có góc ABC là góc ngoài tam giác tại đỉnh B nên:
Bài 6.3 trang 148 sách bài tập Toán 7 Tập 1: Cho tam giác cân ABC có ∠A= 100o. Trên cạnh BC lấy điểm D và E sao cho BD = BA, CE = CA. Tính số đo góc DAE.
Lời giải:
+) Ta có:
(tổng ba góc trong 1 tam giác)
Lại có: tam giác ABC là tam giác cân tại A nên:
+)Xét tam giác ABD có BA= BD (giả thiết) nên tam giác ABD cân tại B.
Lại có; ( tổng ba góc trong 1 tam giác)
+) Tương tự, ta có tam giác AEC cân tại C ( vì CA =CE)
+) Xét tam giác ADE có:
( tổng ba góc trong tam giác)
Suy ra:
Bài 6.4 trang 148 sách bài tập Toán 7 Tập 1: Cho hình bs 4. Chứng minh rằng :
a) C,O,D thẳng hàng ;
b) BC = AD
Lời giải:
+) Xét tam giác OAD có: OA = OD (= bán kính đường tròn)
Suy ra tam giác OAD cân tại O.
Suy ra: ∠A = ∠D ( tính chất tam giác cân). (1)
+) Xét tam giác OBC có: OB = OC (= bán kính đường tròn)
Suy ra tam giác OBC cân tại O.
Suy ra: ∠B = ∠C ( tính chất tam giác cân). (2)
+) Lại có: ∠A = ∠B ( giả thiết) (3)
Từ (1); (2) và (3) suy ra: ∠A = ∠B = ∠C = ∠D
Vậy hai tam giác cân OAD và OBC có góc ở đáy bằng nhau nên góc ở đỉnh bằng nhau: ∠AOD = ∠BOC (4).
+) Ta có: ∠AOD + ∠DOB = 180º ( hai góc kề bù) (5)
Từ (4) và (5) suy ra: ∠BOC + ∠DOB = 180º hay 3 điểm C, O và D thẳng hàng.
b) Xét tam giác OAD và ∆ OCB có:
OA = OC ( = bán kính đường tròn)
∠AOD = ∠BOC ( hai góc đối đỉnh)
OD = OB ( = bán kính đường tròn)
Suy ra:∆ OAD = ∆ OCB ( c.g.c)
Suy ra: AD = BC ( hai cạnh tương ứng).
Xem thêm các bài giải sách bài tập Toán lớp 7 chọn lọc, chi tiết khác:
- Bài 7: Định lí Pi-ta-go
- Bài 8: Các trường hợp bằng nhau của tam giác vuông
- Ôn tập chương 2
- Bài 1: Thu thập số liệu thống kê, tần số
- Bài 2: Bảng "tần số" các giá trị của dấu hiệu
Lời giải bài tập lớp 7 sách mới:
- Giải bài tập Lớp 7 Kết nối tri thức
- Giải bài tập Lớp 7 Chân trời sáng tạo
- Giải bài tập Lớp 7 Cánh diều
Tủ sách VIETJACK shopee lớp 6-8 cho phụ huynh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Giải sách bài tập Toán lớp 7 hay nhất, chi tiết của chúng tôi được biên soạn bám sát nội dung SBT Toán 7 Tập 1 và Tập 2.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 7 Global Success
- Giải Tiếng Anh 7 Friends plus
- Giải sgk Tiếng Anh 7 Smart World
- Giải Tiếng Anh 7 Explore English
- Lớp 7 - Kết nối tri thức
- Soạn văn 7 (hay nhất) - KNTT
- Soạn văn 7 (ngắn nhất) - KNTT
- Giải sgk Toán 7 - KNTT
- Giải sgk Khoa học tự nhiên 7 - KNTT
- Giải sgk Lịch Sử 7 - KNTT
- Giải sgk Địa Lí 7 - KNTT
- Giải sgk Giáo dục công dân 7 - KNTT
- Giải sgk Tin học 7 - KNTT
- Giải sgk Công nghệ 7 - KNTT
- Giải sgk Hoạt động trải nghiệm 7 - KNTT
- Giải sgk Âm nhạc 7 - KNTT
- Lớp 7 - Chân trời sáng tạo
- Soạn văn 7 (hay nhất) - CTST
- Soạn văn 7 (ngắn nhất) - CTST
- Giải sgk Toán 7 - CTST
- Giải sgk Khoa học tự nhiên 7 - CTST
- Giải sgk Lịch Sử 7 - CTST
- Giải sgk Địa Lí 7 - CTST
- Giải sgk Giáo dục công dân 7 - CTST
- Giải sgk Công nghệ 7 - CTST
- Giải sgk Tin học 7 - CTST
- Giải sgk Hoạt động trải nghiệm 7 - CTST
- Giải sgk Âm nhạc 7 - CTST
- Lớp 7 - Cánh diều
- Soạn văn 7 (hay nhất) - Cánh diều
- Soạn văn 7 (ngắn nhất) - Cánh diều
- Giải sgk Toán 7 - Cánh diều
- Giải sgk Khoa học tự nhiên 7 - Cánh diều
- Giải sgk Lịch Sử 7 - Cánh diều
- Giải sgk Địa Lí 7 - Cánh diều
- Giải sgk Giáo dục công dân 7 - Cánh diều
- Giải sgk Công nghệ 7 - Cánh diều
- Giải sgk Tin học 7 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 7 - Cánh diều
- Giải sgk Âm nhạc 7 - Cánh diều