Sách bài tập Toán 7 Bài 8: Các trường hợp bằng nhau của tam giác vuông

Sách bài tập Toán 7 Bài 8: Các trường hợp bằng nhau của tam giác vuông

Bài 93 trang 151 sách bài tập Toán 7 Tập 1: Cho tam giác cân tại A. Kẻ AD vuông góc với BC. Chứng minh rằng AD là tia phân giác của góc A

Lời giải:

Giải sách bài tập Toán lớp 7 hay nhất, chi tiết

Xét hai tam giác vuông ADB và ADC, ta có:

∠(ADB) =∠(ADC) = 90o

AB = AC (giả thiết)

AD cạnh chung

Suy ra: ΔADB= ΔADC(cạnh huyền, cạnh góc vuông)

⇒ ∠(BAD) =∠(CAD) (hai góc tương ứng)

Vậy AD là tia phân giác ∠(BAC)

Bài 94 trang 151 sách bài tập Toán 7 Tập 1: Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, kẻ CE vuông góc với AB. Gọi K là giao điểm của BD và CE. Chứng minh rằng AK là tia phân giác của góc A.

Lời giải:

Giải sách bài tập Toán lớp 7 hay nhất, chi tiết

Xét ΔADB vuông tại D và ΔAEC vuông tại E, ta có:

AB = AC (giả thiết)

∠(BAC) chung

⇒ ΔADB = ΔAEC (cạnh huyền, góc nhọn)

⇒ AD = AE (hai cạnh tương ứng)

Xét ΔADK vuông tại D và ΔAEK vuông tại E có:

AD = AE (chứng minh trên)

AK cạnh chung

⇒ ΔADK = ΔAEK (cạnh huyền, cạnh góc vuông)

⇒ ∠(DAK) = ∠(EAK) (hai góc tương ứng)

Vậy AK là tia phân giác của góc BAC.

Bài 95 trang 151 sách bài tập Toán 7 Tập 1: Tam giác ABC có M là trung điểm BC,AM là tia phân giác góc A. Kẻ MH vuông góc với AB, MK vuông góc với AC. Chứng minh rằng:

a. MH = MK

b. ∠B =∠C

Lời giải:

Giải sách bài tập Toán lớp 7 hay nhất, chi tiết

Xét hai tam giác vuông AHM và AKM, ta có:

∠(AHM) =∠(AKM) =90o

Cạnh huyền AM chung

∠(HAM) =∠(KAM) (gt)

⇒ ΔAHM= ΔAKM (cạnh huyền, góc nhọn)

Suy ra: MH = MK (hai cạnh tương ứng)

Xét hai tam giác vuông MHB và MKC, ta có:

∠(MHB) =∠(MKC) =90o

MH = MK (chứng minh trên)

MC = MB (gt)

⇒ ΔMHB= ΔMKC (cạnh huyền- cạnh góc vuông)

Suy ra ∠B =∠C (hai góc tương ứng)

Bài 96 trang 151 sách bài tập Toán 7 Tập 1: Cho tam giác ABC cân tại A. Các đường trung trực của AB, AC cắt nhau ở I. chứng minh rằng AI là tia phân giác góc A.

Lời giải:

Giải sách bài tập Toán lớp 7 hay nhất, chi tiết

Gọi M, N là trung điểm của AB và AC.

Ta có: AM = 1/2 AB (gt); AN = 1/2 AC (gt)

Mà AB = AC (gt)

⇒ AM = AN

Xét hai tam giác vuông AMI và ANI, ta có:

∠(AMI) = ∠(ANI) = 90o

AM = AN (chứng minh trên)

AI cạnh huyền chung

⇒ ΔAMI= ΔANI (cạnh huyền, cạnh góc vuông)

⇒ ∠(A1) = ∠(A2) (hai góc tương ứng)

Vậy AI là tia phân giác của ∠(BAC)

Bài 97 trang 151 sách bài tập Toán 7 Tập 1: Cho tam giác ABC cân tại A. Qua B kẻ đường thẳng vuông góc với AB, qua C kẻ đường thẳng vuông góc với AC, chúng cắt nhau tại D. Chứng minh rằng AD là tia phân giác của góc A.

Lời giải:

Giải sách bài tập Toán lớp 7 hay nhất, chi tiết

Xét hai tam giác vuông ABD và ACD, ta có:

∠(ABD) =∠(ACD) =90o

Cạnh huyền AD chung

AB = AC (giả thiết)

⇒ ΔABD= ΔACD (cạnh huyền, cạnh góc vuông)

Suy ra: ∠(A1 ) =∠(A2) (hai góc tương ứng)

Suy ra AD là tia phân giác góc A

Bài 98 trang 151 sách bài tập Toán 7 Tập 1: Tam giác ABC có M là trung điểm của BC và AM là tia phân giác của góc A. Chứng minh rằng tam giác ABC là tam giác cân.

Lời giải:

Giải sách bài tập Toán lớp 7 hay nhất, chi tiết

Kẻ MH ⊥ AB, MK ⊥ AC

Xét hai tam giác vuông AHM và AKM, ta có:

∠(AHM) =∠(AKM) = 90o

Cạnh huyền AM chung

∠(HAM) = ∠KAM) (gt)

⇒ ΔAHM = ΔAKM (cạnh huyền, góc nhọn)

Suy ra: MH = MK (hai cạnh tương ứng)

Xét hai tam giác vuông MHB và MKC, ta có:

∠(MHB) = ∠(MKC) = 90o

MB = MC ( vì M là trung điểm BC).

MH = MK (chứng minh trên)

⇒ ΔMHB = ΔMKC (cạnh huyền, cạnh góc vuông)

Suy ra: ∠B = ∠C (hai góc tương ứng)

Vậy tam giác ABC cân tại A.

Bài 99 trang 151 sách bài tập Toán 7 Tập 1: Cho tam giác ABC cân tại A. Trên tia đối của tai BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông với AD, kẻ CK vuông góc với AE. Chứng minh rằng:

a) BH = CK

b) ΔABH= ΔACK

Lời giải:

Giải sách bài tập Toán lớp 7 hay nhất, chi tiết

a) Vì ΔABC cân tại A nên∠(ABC) =∠(ACB) (tính chất tam giác cân)

Ta có: ∠(ABC) +∠(ABD) =180o(hai góc kề bù)

∠(ACB) +∠(ACE) =180o(hai góc kề bù)

Suy ra: ∠(ABD) =∠(ACE)

Xét ΔABD và ΔACE, ta có:

AB = AC (gt)

∠(ABD) =∠(ACE) (chứng minh trên)

BD=CE (gt)

Suy ra: ΔABD= ΔACE (c.g.c)

⇒∠D =∠E (hai góc tương ứng)

Xét hai tam giác vuông ΔBHD và ΔCKE, ta có:

∠(BHD) =∠(CKE) = 90º

BD=CE (gt)

∠D =∠E (chứng minh trên)

Suy ra: ΔBHD= ΔCKE (cạnh huyền – góc nhọn)

Suy ra: BH = CK (hai cạnh tương ứng)

b) Xét ΔABH và ΔACK, ta có:

AB = AC (gt)

∠(AHB) =∠(AKC) =90o

BH=CK ( chứng minh trên)

Suy ra: ΔABH= ΔACK (cạnh huyền– cạnh góc vuông)

Bài 100 trang 151 sách bài tập Toán 7 Tập 1: Cho tam giác ABC. Các tia phân giác của các góc B và C cát nhau tại I. chứng minh rằng AI là tia phân giác của góc A.

Hướng dẫn: từ I, kẻ các đường vuông góc với các cạnh của tam giác ABC.

Lời giải:

Giải sách bài tập Toán lớp 7 hay nhất, chi tiết

Kẻ: ID⊥AB, IE⊥BC, IF⊥AC

Xét hai tam giác vuông ΔIBD và ΔIEB, ta có:

∠(DBI) =∠(EBI) (gt)

∠(IDB) =∠(IEB) =90o

BI cạnh chung

Suy ra: ΔIDB= ΔIEB(cạnh huyền, góc nhọn)

Suy ra: ID = IE ( hai cạnh tương ứng)

Xét hai tam giác vuông ΔIEC và ΔIFC, ta có:

∠(ECI) =∠(FCI)

∠(IEC) =∠(IFC) =90o

CI cạnh huyền chung

Suy ra: ΔIEC= ΔIFC(cạnh huyền góc nhọn)

Suy ra: IE = IF (hai cạnh tương ứng) (2)

Từ (1) và (2) suy ra: ID = IF

Xét hai tam giác vuông ΔIDA và ΔIFA, ta có:

ID=IF

∠(IDA) =∠(IFA) =90o

AI cạnh huyền chung

Suy ra: ΔIDA= ΔIFA(cạnh huyền.cạnh góc vuông)

Suy ra: ∠(DAI) =∠(FAI) (hai góc tương ứng)

Vậy AI là tia phân giác góc A

Bài 101 trang 151 sách bài tập Toán 7 Tập 1: Cho tam giác AB < AC. Tia phân giác của góc A cắt đường trung trực của BC tại I. kẻ IH vuông góc với đường thẳng AB, kẻ IK vuông góc với đường thẳng AC. Chứng minh rằng BH = CK.

Lời giải:

Giải sách bài tập Toán lớp 7 hay nhất, chi tiết

Gọi đường trung trực của BC cắt BC tại M.

Xét ΔBMI và ΔCMI, ta có:

∠(BMI) = ∠(CMI) = 90o (gt)

BM = CM ( vì M là trung điểm của BC )

MI cạnh chung

Suy ra: ΔBMI = ΔCMI(c.g.c)

Suy ra: IB = IC ( hai cạnh tương ứng)

Xét hai tam giác vuông ΔIHA và ΔIKA, ta có:

∠(HAI) = ∠(KAI) ( vì AI là tia phân giác của góc BAC).

∠(IHA) = ∠(IKA) = 90o

AI cạnh huyền chung

Suy ra: ΔIHA = ΔIKA(cạnh huyền góc nhọn)

Suy ra: IH = IK (hai cạnh tương ứng)

Xét hai tam giác vuông ΔIHB và ΔIKC, ta có:

IB = IC ( chứng minh trên )

∠(IHB) =∠(IKC) =90o

IH = IK (chứng minh trên)

Suy ra: ΔIHB = ΔIKC(cạnh huyền.cạnh góc vuông)

Suy ra: BH = CK(hai cạnh tương ứng)

Bài 8.1 trang 152 sách bài tập Toán 7 Tập 1: Trong các khẳng định sau, khẳng định nào là đúng, khẳng định nào là sai ?

Các tam giác vuông ABC và DEF có ∠A=∠D=90o, AC=DE bằng nhau nếu có thêm :

a) BC = EF;

b) ∠C = ∠E;

c) ∠C = ∠F;

Lời giải:

Xét hai tam giác vuông ABC và DFE có: ∠A = ∠D = 90º ; AC=DE

a) Thêm điều kiện BC=EF thì ΔABC=ΔDFE (cạnh huyền - cạnh góc vuông).

b) Thêm điều kiện ∠C = ∠E thì ΔABC=ΔDFE (g.c.g).

c) Thêm điều kiện ∠C = ∠F thì ta không thể kết luận ΔABC=ΔDFE

a) Đúng;

b) Đúng;

c) Sai.

Bài 8.2 trang 152 sách bài tập Toán 7 Tập 1: Các tam giác vuông ABC và DEF có ∠A = ∠D = 90o,AC = DF,∠B = ∠E.Các tam giác vuông có bằng nhau không

Lời giải:

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7 Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Bài 8.3 trang 152 sách bài tập Toán 7 Tập 1: Cho tam giác ABC cân tại A. Trên tia đối BC lấy điểm D, Trên tia đối của tia CB lấy điểm E sao cho ∠BAD = ∠CAE. Kẻ BH vuông góc với AD (H ∈ AD). kẻ CK vuông góc với AE (K ∈ AE). Chứng minh rằng :

a) BD = CE

b) BH = CK

Lời giải:

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

a) +) Do tam giác ABC cân tại A nên ∠ABC = ∠ACB (1)

Lại có; ∠ABC + ∠ABD = 180º ( hai góc kề bù) (2)

∠ACB + ∠ACE = 180º ( hai góc kề bù) (3)

Từ (1); (2); (3) suy ra: ∠ABD = ∠ACE

+) Xét ΔABD và ΔACE có:

∠DAB = ∠EAC ( giả thiết)

AB = AC (vì tam giác ABC cân tại A)

∠ABD = ∠ACE ( chứng minh trên )

⇒ ΔABD = ΔACE (g.c.g)

⇒ BD = CE ( hai cạnh tương ứng)..

b) Xét tam giác BHA và ∆CKA có

∠AHB = ∠AKC = 90º

AB = AC ( vì tam giác ABC cân tại A).

∠HAB = ∠KAC ( giả thiết)

Suy ra ΔBHA = ΔCKA (cạnh huyền – góc nhọn), suy ra BH = CK.

Xem thêm các bài giải sách bài tập Toán lớp 7 chọn lọc, chi tiết khác:

Lời giải bài tập lớp 7 sách mới:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 7

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và khóa học dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải sách bài tập Toán lớp 7 hay nhất, chi tiết của chúng tôi được biên soạn bám sát nội dung SBT Toán 7 Tập 1 và Tập 2.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 7 sách mới các môn học
Tài liệu giáo viên