Với 13 bài tập trắc nghiệm Hệ bất phương trình bậc nhất hai ẩn Toán lớp 10 có đáp án và lời giải chi tiết đầy đủ
các mức độ sách Chân trời sáng tạo sẽ giúp học sinh ôn luyện trắc nghiệm để biết cách làm các dạng bài tập Toán 10.
Câu 1. Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn?
Đáp án đúng là: A
- Hệ bất phương trình là hệ bất phương trình bậc nhất hai ẩn vì có hai bất phương trình x < 1 và y - 1 > 2 đều là bất phương trình bậc nhất hai ẩn.
- Hệ bất phương trình không là hệ bất phương trình bậc nhất hai ẩn vì có bất phương trình x2 + y < 0 không là bất phương trình bậc nhất hai ẩn.
- Bất phương trình y – 2x < 0 không là hệ bất phương trình bậc nhất hai ẩn vì chỉ có một bất phương trình bậc nhất hai ẩn.
Hệ bất phương trình không là hệ bất phương trình bậc nhất hai ẩn vì có bất phương trình 2x – y2 < 5 là bất phương trình bậc hai hai ẩn.
Câu 2. Cặp số nào sau đây là nghiệm của hệ bất phương trình ?
A. (2; 1);
B. (10; 2);
C. (‒3; 4);
D. (0; ‒10).
Đáp án đúng là: B
Câu A: Thay x = 2 và y = 1 vào bất phương trình x + y > 4 ta có: 2 + 1 = 3 > 4 là mệnh đề sai nên cặp số (x; y) = (2; 1) không là nghiệm của bất phương trình x + y > 4.
Vậy cặp số (x; y) = (2; 1) không là nghiệm của hệ bất phương trình đã cho. Do đó A là sai.
Câu B: Thay x = 10 và y = 2 vào bất phương trình x + y > 4 ta có: 10 + 2 = 12 > 4 là mệnh đề đúng nên cặp số (x; y) = (10; 2) là nghiệm của bất phương trình x + y > 4.
Thay x = 10 và y = 2 vào bất phương trình x – y < 10 ta có: 10 – 2 = 8 < 10 là mệnh đề đúng nên cặp số (x; y) = (10; 2) là nghiệm của bất phương trình x – y < 10.
Cặp (x; y) = (10; 2) là nghiệm của bất phương trình x + y > 4 và cũng là nghiệm của bất phương trình x – y < 10. Nên cặp (x; y) = (10; 2) là nghiệm của hệ bất phương trình đã cho. Do đó B là đúng.
Câu C: Thay x = ‒3 và y = 4 vào bất phương trình x + y > 4 ta có: ‒3 + 4 = 1 > 4 là mệnh đề sai nên cặp số (x; y) = (‒3; 4) không là nghiệm của bất phương trình x + y > 4.
Vậy cặp số (x; y) = (‒3; 4) không là nghiệm của hệ bất phương trình đã cho. Do đó C là sai.
Câu D: Thay x = 0 và y = ‒10 vào bất phương trình x – y < 10 ta có: 0 ‒ (‒10) = 10 < 10 là mệnh đề sai nên cặp số (x; y) = (0; ‒10) không là nghiệm của bất phương trình x ‒ y < 10.
Vậy cặp số (x; y) = (0; ‒10) không là nghiệm của hệ bất phương trình đã cho. Do đó D là sai.
Vậy ta chọn phương án B.
Quảng cáo
Câu 3. Điểm M(0; -3) thuộc miền nghiệm của hệ bất phương trình nào sau đây?
Đáp án đúng là: A
Ta thấy bất phương trình thứ hai của hệ bất phương trình trong các phương án đều là 2x + 5y ≤ 12x + 8 nên ta chỉ cần xét đến bất phương trình thứ nhất của từng hệ.
Với x = 0 và y = -3 thay vào bất phương trình 2x – y ≤ 3 ta có: 2.0 – (‒3) = 3 ≤ 3 là mệnh đề đúng.
Do đó (0; -3) là nghiệm của bất phương trình 2x – y ≤ 3.
Vậy ta chọn phương án A.
Câu 4. Cho hệ bất phương trình bậc nhất hai ẩn:
Và F(x; y) = 3,5x + 2y. Tìm giá trị lớn nhất của F(x; y).
A. 210;
B. 230;
C. 200;
D. 270.
Đáp án đúng là: B
Xác định miền nghiệm của hệ bất phương trình trên.
- Xác định miền nghiệm D1 của bất phương trình x + y ≤ 100:
+ Vẽ đường thẳng d1: x + y = 100.
+ Xét gốc toạ độ O(0; 0) có: 0 + 0 = 0 ≤ 100 là mệnh đề đúng nên tọa độ điểm O(0; 0) thỏa mãn bất phương trình x + y ≤ 100.
Do đó, miền nghiệm D1 của bất phương trình x + y ≤ 100 là nửa mặt phẳng bờ d1 (kể cả bờ d1) chứa gốc tọa độ O.
- Miền nghiệm D2 của bất phương trình 2x + y ≤ 120:
+ Vẽ đường thẳng d2: 2x + y = 120.
+ Xét gốc toạ độ O(0; 0) có: 2. 0 + 0 = 0 ≤ 120 là mệnh đề đúng nên tọa độ điểm O(0; 0) thỏa mãn bất phương trình 2x + y ≤ 120.
Do đó, miền nghiệm D2 của bất phương trình 2x + y ≤ 120 là nửa mặt phẳng bờ d2 (kể cả bờ d2) chứa gốc tọa độ O.
- Xác định miền nghiệm D3 của bất phương trình x ≥ 0.
+ Đường thẳng x = 0 là trục tọa độ Oy.
+ Miền nghiệm D3 của bất phương trình x ≥ 0 là nửa mặt phẳng bờ Oy (kể cả bờ Oy) nằm bên phải trục Oy.
- Tương tự, miền nghiệm D4 của bất phương trình y ≥ 0 là nửa mặt phẳng bờ Ox (kể cả bờ Ox) nằm bên trên trục Ox.
Từ đó ta có miền nghiệm không bị gạch chính là giao miền nghiệm của các bất phương trình trong hệ.
Miền nghiệm là miền tứ giác OABC với O(0;0), A(0;100), B(20;80) và C(60;0).
Tính giá trị của biểu thức F(x; y) = 3,5x + 2y tại các đỉnh của tứ giác:
Tại O(0; 0): F = 3,5.0 + 2.0 = 0;
Tại A(0; 100): F = 3,5.0 + 2.100 = 200;
Tại B(20; 80): F = 3,5.20 + 2.80 = 230;
Tại C(60; 0): F = 3,5.60 + 2.0 = 210;
So sánh các giá trị thu được kết luận giá trị lớn nhất của F(x; y) là 230 khi (x; y) = (20; 80).
Câu 5. Cho hệ bất phương trình . Hỏi khi cho y = 0, x có thể nhận mấy giá trị nguyên nào?
Quảng cáo
A. 0;
B. 1;
C. 2;
D. 3.
Đáp án đúng là: A
Hệ bất phương trình là hệ bất phương trình bậc nhất hai ẩn.
Khi y = 0, hệ trở thành: (vô lí)
Vậy không có giá trị nguyên nào của x thoả mãn để y = 0.
Câu 6. Cho hệ bất phương trình
Trong các cặp số (-1; -1), (-1; 0), (1; 1), (2; 2), (0; -1) thì những cặp số là nghiệm của hệ bất phương trình trên là:
A. (-1; -1), (-1; 0);
B. (1; 1), (-1; 0);
C. (1; 1), (2; 2);
D. (0; -1), (1; 1).
Đáp án đúng là: C
+) Xét cặp số (-1; -1): Thay x = -1 và y = -1 vào bất phương trình x ≥ 0 ta được -1 ≥ 0 là mệnh đề sai nên cặp số (-1; -1) không là nghiệm của bất phương trình x ≥ 0. Do đó cặp số (-1; -1) không là nghiệm của hệ bất phương trình đã cho. Do đó A là sai.
+) Xét cặp số (-1; 0): Ta thấy x = -1 ≥ 0 là mệnh đề sai nên cặp số (-1; 0) không là nghiệm của bất phương trình x ≥ 0. Do đó cặp số (-1; 0) không là nghiệm của hệ bất phương trình đã cho. Do đó B là sai.
+) Xét cặp số (1; 1):
Thay x = 1 và y = 1 vào bất phương trình x ≥ 0 ta được 1 ≥ 0 là mệnh đề đúng. Do đó cặp (1; 1) là nghiệm của bất phương trình x ≥ 0.
Thay x = 1 và y = 1 vào bất phương trình y ≥ 0 ta được 1 ≥ 0 là mệnh đề đúng. Do đó cặp (1; 1) là nghiệm của bất phương trình y ≥ 0.
Thay x = 1 và y = 1 vào bất phương trình x + y ≤ 80 ta được 1 + 1 = 2 ≤ 80 là mệnh đề đúng. Do đó cặp (1; 1) là nghiệm của bất phương trình x + y ≤ 80.
Thay x = 1 và y = 1 vào bất phương trình 2x + y ≤ 120 ta được 2. 1 + 1 = 3 ≤ 120 là mệnh đề đúng. Do đó cặp (1; 1) là nghiệm của bất phương trình 2x + y ≤ 120.
Vậy (x; y) = (1; 1) là nghiệm của hệ bất phương trình .
Tương tự (x; y) = (2; 2) là nghiệm của hệ bất phương trình .
Xét cặp số: (0; -1): ta thấy y = -1 ≥ 0 là mệnh đề sai nên cặp số (0; -1) không là nghiệm của bất phương trình y ≥ 0. Do đó cặp số (-1; 0) không là nghiệm của hệ bất phương trình đã cho. Do đó D là sai.
Vậy ta chọn phương án C.
Câu 7. Bác An cần phải làm nến trong vòng không quá 8 giờ để bán. Nến loại A cần 30 phút để làm xong một cây, nến loại B cần 1 giờ để làm xong một cây. Gọi x, y lần lượt là số nến loại A, B bác An sẽ làm được. Hệ bất phương trình mô tả điều kiện của x và y là hệ bất phương trình nào sau đây?
Đáp án đúng là: B
Số giờ bác An làm xong x cây nến loại A là: 0,5x (giờ).
Số giờ bác An làm xong y cây nến loại B là: y (giờ).
Tổng số giờ để bác An làm x nến loại A và y nến loại B là: 0,5x + y (giờ).
Do bác An cần phải làm nến trong vòng không quá 8 giờ nên 0,5x + y ≤ 8.
Số nến bạn An làm luôn không âm nên x ≥ 0, y ≥ 0.
Ta có hệ bất phương trình sau:
Vậy ta chọn phương án B.
Quảng cáo
Câu 8. Cho hệ bất phương trình . Miền nghiệm của hệ bất phương trình biểu diễn bởi miền tam giác OAB. Ba điểm nào sau đây có tọa độ đúng của O, A và B?
A. O(0; 0), A(0; 8), B(16; 0);
B. O(0; 0), A(8; 0), B(16; 0);
C. O(0; 0), A(0; 8), B(0; 16);
D. O(0; 0), A(8; 8), B(16; 0).
Đáp án đúng là: A
Biểu diễn miền nghiệm của hệ bất phương trình:
- Xác định miền nghiệm D1 của bất phương trình x ≥ 0.
+ Đường thẳng x = 0 là trục tọa độ Oy.
+ Miền nghiệm D1 của bất phương trình x ≥ 0 là nửa mặt phẳng bờ Oy (kể cả trục Oy) nằm bên phải trục Oy.
- Tương tự, miền nghiệm D2 của bất phương trình y ≥ 0 là nửa mặt phẳng bờ Ox (kể cả trục Ox) nằm bên trên trục Ox.
- Miền nghiệm D3 của bất phương trình 0,5x + y ≤ 8:
+ Vẽ đường thẳng ∆: 0,5x + y = 8.
+ Xét gốc toạ độ O(0; 0) có: 0,5. 0 + 0 = 0 ≤ 8 là mệnh đề đúng nên tọa độ điểm O(0; 0) thỏa mãn bất phương trình 0,5x + y ≤ 8.
Do đó, miền nghiệm D3 của bất phương trình 0,5x + y ≤ 8 là nửa mặt phẳng bờ ∆ (kể cả bờ ∆) chứa gốc tọa độ O.
Miền nghiệm của hệ bất phương trình trên là miền tứ giác OAB với: O(0; 0), A(0; 8), B(16; 0).
Vậy ta chọn phương án A.
Câu 9. Tìm m để hệ bất phương trình sau trở thành hệ bất phương trình bậc nhất hai ẩn:
A. m = ‒1;
B. m = 0;
C. m = 1;
D. m = 2.
Đáp án đúng là: B
Để hệ bất phương trình trở thành hệ bất phương trình bậc nhất hai ẩn thì hệ số của x2, y2 đều phải bằng 0
⇔ m = 0.
Vậy ta chọn phương án B.
Câu 10. Điểm M(1; 0) thuộc miền nghiệm của hệ bất phương trình nào sau đây?
Đáp án đúng là: B
Câu A: Thay x = 1, y = 0 vào từng bất phương trình trong hệ ta có:
2.1 + 0 = 2 > 1 là mệnh đề đúng và 1 + 0 = 1 > 2 là mệnh đề sai, vậy điểm M(1; 0) không thuộc miền nghiệm của hệ bất phương trình. Do đó A là sai.
Câu B: Thay x = 1, y = 0 vào từng bất phương trình trong hệ ta có:
2.1 + 0 = 2 > 1 là mệnh đề đúng và 1 + 0 = 1 > 0 là mệnh đề đúng, vậy điểm M(1; 0) thuộc miền nghiệm của hệ bất phương trình. Do đó B là đúng.
Câu C: Thay x = 1, y = 0 vào từng bất phương trình trong hệ ta có:
2.1 + 0 = 2 > 2 là mệnh đề sai và 1 + 0 = 1 > 3 là mệnh đề sai, vậy điểm M(1; 0) không thuộc miền nghiệm của hệ bất phương trình. Do đó C là sai.
Câu D: Thay x = 1, y = 0 vào từng bất phương trình trong hệ ta có:
2.1 + 0 = 2 > 1 là mệnh đề đúng và 1 + 0 = 1 > 4 là mệnh đề sai, vậy điểm M(1; 0) không thuộc miền nghiệm của hệ bất phương trình. Do đó D là sai.
Vậy ta chọn phương án B.
Phần II. Trắc nghiệm đúng - sai
Câu hỏi. Cho hệ bất phương trình: .
a) Hệ trên là một hệ bất phương trình bậc nhất hai ẩn.
b) (-2; 8) là một nghiệm của hệ bất phương trình trên.
c) (3, 1) là một nghiệm của hệ bất phương trình trên.
d) (-2; -1) là một nghiệm của hệ bất phương trình trên.
a) Đúng. Hệ đã cho là một hệ bất phương trình bậc nhất hai ẩn.
b) Đúng. Thay (-2; 8) vào hệ bất phương trình ta được:
(đúng).
Vậy (-2; 8) là một nghiệm của hệ bất phương trình đó.
c) d) Sai. Tương tự, ta thay các cặp số (3; 1) và (-2; -1) vào hệ bất phương trình ta thấy không thỏa mãn, vậy đây không phải là các nghiệm của hệ bất phương trình.
Phần III. Trắc nghiệm trả lời ngắn
Câu 1. Một xưởng cơ khí có hai công nhân là Chiến và Bình. Xưởng sản xuất loại sản phẩm I và II. Mỗi sản phẩm I bán lãi 500 nghìn đồng, mỗi sản phẩm II bán lãi 400 nghìn đồng. Để sản xuất được một sản phẩm I thì Chiến phải làm việc trong 3 giờ, Bình phải làm việc trong 1 giờ. Để sản xuất được một sản phẩm II thì Chiến phải làm việc trong 2 giờ, Bình phải làm việc trong 6 giờ. Một người không thể làm được đồng thời hai sản phẩm. Biết rằng trong một tháng Chiến không thể làm việc quá 180 giờ và Bình không thể làm việc quá 220 giờ. Số tiền lãi lớn nhất trong một tháng của xưởng là bao nhiêu triệu đồng?
Gọi x, y lần lượt là số sản phẩm loại I và loại II được sản xuất ra. Điều kiện x, y nguyên dương.
Ta có hệ bất phương trình sau: .
Miền nghiệm của hệ trên là
Tiền lãi trong một tháng của xưởng là T = 0,5x + 0,4y (triệu đồng).
Ta thấy T đạt giá trị lớn nhất chỉ có thể tại các điểm A, B, C. Vì C có tọa độ không nguyên nên loại.
Tại A (60, 0) thì T = 30 triệu đồng.
Tại B (30; 40) thì T = 32 triệu đồng.
Vậy tiền lãi lớn nhất trong một tháng của xưởng là 32 triệu đồng.
Đáp án: 32.
Câu 2. Trong một cuộc thi pha chế, hai đội A, B được sử dụng tối đa 24g hương liệu, 9 lít nước và 210g đường để pha chế nước cam và nước táo. Để pha chế 1 lít nước cam cần 30g đường, 1 lít nước và 1g hương liệu; pha chế 1 lít nước táo cần 10g đường, 1 lít nước và 4g hương liệu. Mỗi lít nước cam nhận được 60 điểm thưởng, mỗi lít nước táo nhận được 80 điểm thưởng. Đội A pha chế được a lít nước cam và b lít nước táo và dành được điểm thưởng cao nhất. Tính hiệu số a - b.
Gọi x, y lần lượt là số lít nước cam và nước táo mà mỗi đội cần pha chế ( x ≥ 0; y ≥ 0).
Để pha chế lít nước cam cần 30x g đường, x lít nước và x g hương liệu.
Để pha chế y lít nước táo cần 10y g đường, x lít nước và 4y g hương liệu.
Theo bài ra ta có hệ bất phương trình: .
Số điểm đạt được khi pha x lít nước cam và y lít nước táo là M (x; y) = 60x + 80y. Bài toán trở thành tìm x, y để M (x, y) đạt giá trị lớn nhất.
Ta biểu diễn miền nghiệm của hệ (*) trên mặt phẳng tọa độ như sau:
Miền nghiệm là ngũ giác ABCD.
Tọa độ các điểm: A (4; 5), B (6; 3), C (7; 0), D (0; 0), E (0; 6).
M (x; y) sẽ đạt giá trị lớn nhất, giá trị nhỏ nhất tại các đỉnh của miền nghiệm nên thay tọa độ các điểm vào biểu thức M (x; y) ta được:
M (4; 5) = 640; M (6; 3) = 600; M (7; 0) = 420; M (0; 0) = 0; M (0; 6) = 480.
Vậy giá trị lớn nhất của M (x, y) bằng 640 khi x = 4; y = 5 ⇒ a = 4; b = 5 ⇒ a - b = -1