Với 15 bài tập trắc nghiệm Đường tròn trong mặt phẳng toạ độ Toán lớp 10 có đáp án và lời giải chi tiết đầy đủ
các mức độ sách Chân trời sáng tạo sẽ giúp học sinh ôn luyện trắc nghiệm để biết cách làm các dạng bài tập Toán 10.
Vậy phương trình đường tròn (C): (x + 3)2 + (y – 1)2 = 5.
Do đó ta chọn phương án D.
Câu 10. Cho phương trình x2 + y2 – 2mx – 4(m – 2)y + 6 – m = 0. Điều kiện của m để phương trình đã cho là một phương trình đường tròn là:
A. m ∈ ℝ;
B. ;
C. ;
D. .
Đáp án đúng là: B
Phương trình đã cho có dạng x2 + y2 – 2ax – 2by + c = 0, với a = m, b = 2(m – 2), c = 6 – m.
Ta có a2 + b2 – c = m2 + 4(m2 – 4m + 4) – 6 + m = 5m2 – 15m + 10.
Để phương trình đã cho là phương trình đường tròn thì a2 + b2 – c > 0.
Nghĩa là 5m2 – 15m + 10 > 0
⇔ m < 1 hoặc m > 2.
Vậy m ∈ (–∞; 1) ∪ (2; +∞) thỏa mãn yêu cầu bài toán.
Do đó ta chọn phương án B.
Câu 11. Cho đường tròn (C): x2 + y2 + 5x + 7y – 3 = 0. Khoảng cách từ tâm của (C) đến trục hoành bằng:
A. 5;
B. 7;
C. ;
D. .
Đáp án đúng là: C
Phương trình đã cho có dạng: x2 + y2 – 2ax – 2by + c = 0, với , , c = –3.
Suy ra tâm .
Trục Ox có phương trình là y = 0.
Ta có .
Vậy ta chọn phương án C.
Câu 12. Đường tròn (C) có tâm I thuộc đường thẳng d: x + 3y + 8 = 0, đi qua điểm A(–2; 1) và tiếp xúc với đường thẳng ∆: 3x – 4y + 10 = 0. Phương trình đường tròn (C) là:
A. (x – 2)2 + (y + 2)2 = 25;
B. (x + 5)2 + (y + 1)2 = 16;
C. (x + 2)2 + (y + 2)2 = 9;
D. (x – 1)2 + (y + 3)2 = 25.
Đáp án đúng là: D
Gọi I(a; b) là tâm của đường tròn (C).
Ta có I ∈ d.
Suy ra a + 3b + 8 = 0 ⇔ a = –3b – 8.
Ta có đường tròn (C) đi qua điểm A(–2; 1) nên AI = R (1).
Lại có đường tròn (C) tiếp xúc với đường thẳng ∆ nên d(I, ∆) = R (2).
Vậy phương trình đường tròn (C) là: (x – 1)2 + (y + 3)2 = 25.
Vậy ta chọn phương án D.
Câu 13.Cho đường tròn (C): (x – 2)2 + (y + 4)2 = 25, biết tiếp tuyến vuông góc với đường thẳng d: 3x – 4y + 5 = 0. Phương trình tiếp tuyến của (C) là:
A. 4x – 3y + 5 = 0; 4x – 3y – 45 = 0;
B. 4x + 3y + 5 = 0; 4x + 3y + 3 = 0;
C. 4x + 3y + 29 = 0;
D. 4x + 3y + 29 = 0; 4x + 3y – 21 = 0.
Đáp án đúng là: D
Gọi ∆ là tiếp tuyến cần tìm.
Đường tròn (C) có tâm I(2; –4), bán kính R = 5.
Đường thẳng d có vectơ pháp tuyến .
Theo đề, ta có ∆ ⊥ d nên ∆ nhận vectơ pháp tuyến của d làm vectơ chỉ phương.
Do đó ∆ có vectơ chỉ phương .
Khi đó ∆ có vectơ pháp tuyến .
Vì vậy phương trình tiếp tuyến cần tìm có dạng ∆: 4x + 3y + c = 0.
Vì ∆ là tiếp tuyến của đường tròn (C) nên d(I, ∆) = R.
⇔ |c – 4| = 25
⇔ c – 4 = 25 hoặc c – 4 = –25
⇔ c = 29 hoặc c = –21.
Vậy ∆: 4x + 3y + 29 = 0 hoặc ∆: 4x + 3y – 21 = 0.
Do đó ta chọn phương án D.
Câu 14. Cho phương trình (C): x2 + y2 – 2(m + 1)x + 4y – 1 = 0. Với giá trị nào của m thì đường tròn (C) có bán kính nhỏ nhất?
A. m = 2;
B. m = –1;
C. m = 1;
D. m = –2.
Đáp án đúng là: B
Phương trình đường tròn (C) có dạng: x2 + y2 – 2ax – 2by + c = 0, với a = m + 1, b = –2, c = –1.
Ta có R2 = a2 + b2 – c = (m + 1)2 + 4 + 1 = (m + 1)2 + 5.
Đường tròn (C) có bán kính nhỏ nhất khi và chỉ khi biểu thức (m + 1)2 + 5 đạt giá trị nhỏ nhất.
Ta có: (m + 1)2 ≥ 0, ∀m ∈ ℝ.
⇔ (m + 1)2 + 5 ≥ 5, ∀m ∈ ℝ.
Vậy giá trị nhỏ nhất của biểu thức (m + 1)2 + 5 là 5.
Dấu “=” xảy ra ⇔ m = –1.
Vậy m = –1 thỏa mãn yêu cầu bài toán.
Do đó ta chọn phương án B.
Câu 15. Cho đường tròn (C): x2 + y2 – 2x – 4y + 1 = 0. Gọi d1, d2 lần lượt là tiếp tuyến của đường tròn (C) tại điểm M(3; 2), N(1; 0). Tọa độ giao điểm của d1 và d2 là:
A. (3; 0);
B. (–3; 0);
C. (0; 3);
D. (0; –3).
Đáp án đúng là: A
Ta viết phương trình d1:
Ta có 32 + 22 – 2.3 – 4.2 + 1 = 0 (đúng).
Do đó điểm M ∈ (C).
Phương trình đường tròn (C) có dạng: x2 + y2 – 2ax – 2by + c = 0, với a = 1, b = 2, c = 1.
Suy ra tâm I(1; 2), bán kính R = .
Phương trình d1 là: (1 – 3)(x – 3) + (2 – 2)(y – 2) = 0
⇔ –2(x – 3) = 0 ⇔ x – 3 = 0.
Tương tự, ta viết phương trình d2:
Ta có 12 + 02 – 2.1 – 4.0 + 1 = 0 (đúng).
Do đó N ∈ (C).
Phương trình d2 là: (1 – 1)(x – 1) + (2 – 0)(y –0) = 0
⇔ y = 0.
Gọi A là giao điểm của d1 và d2.
Suy ra tọa độ A là nghiệm của hệ phương trình:
Khi đó ta có tọa độ A(3; 0).
Vậy ta chọn phương án A.
Xem thêm bài tập trắc nghiệm Toán lớp 10 Chân trời sáng tạo có đáp án hay khác: