Các dạng bài tập Số hữu tỉ lớp 7 (Phương pháp giải chi tiết)
Chuyên đề phương pháp giải các dạng bài tập Số hữu tỉ lớp 7 chương trình sách mới hay, chi tiết với bài tập tự luyện đa dạng giúp học sinh ôn tập, biết cách làm bài tập về Số hữu tỉ.
Các dạng bài tập Số hữu tỉ lớp 7 (Phương pháp giải chi tiết)
Biểu diễn số hữu tỉ trên trục số và thứ tự trong tập hợp số hữu tỉ
Ứng dụng của dạng số hữu tỉ và so sánh số hữu tỉ vào bài toán thực tế
Ứng dụng của phép cộng, trừ, nhân, chia số hữu tỉ vào bài toán thực tế
Tính giá trị biểu thức có chứa lũy thừa với số mũ tự nhiên của một số hữu tỉ
Ứng dụng của các phép tính lũy thừa của số hữu tỉ vào bài toán thực tế
Cách sử dụng kí hiệu ∈, ∉, ⊂, ℕ, ℤ, ℚ (cách giải + bài tập)
1. Phương pháp giải
‒ Để sử dụng được các kí hiệu ∈, ∉, ⊂, ℕ, ℤ, ℚ thì ta cần nắm vững ý nghĩa và kí hiệu của từng kí hiệu:
+ Kí hiệu ℕ: Tập hợp các số tự nhiên.
+ Kí hiệu ℤ: Tập hợp các số nguyên.
+ Kí hiệu ℚ: Tập hợp các số hữu tỉ.
+ Kí hiệu ∈: “phần tử của” hoặc “thuộc”
+ Kí hiệu ∉: “không phải là phần tử của” hoặc “không thuộc”.
+ Kí hiệu ⊂: “tập hợp con của”.
‒ Các kí hiệu ∈ ; ∉ dùng để so sánh giữa phần tử với tập hợp.
‒ Kí hiệu ⊂ dùng để so sánh giữa các tập hợp với nhau.
‒ Để biết được một số thuộc tập hợp số hữu tỉ ℚ hay không ta cần nắm được định nghĩa số hữu tỉ: Số hữu tỉ là số được viết dưới dạng phân số với a, b ∈ ℤ, b ≠ 0.
Chú ý: Số thập phân, số nguyên, hỗn số đều là số hữu tỉ.
2. Ví dụ minh hoạ
Ví dụ 1. Giải thích vì sao các số ‒5; 0; ‒0,41; là các số hữu tỉ. Viết kí hiệu các số này trong tập số hữu tỉ.
Hướng dẫn giải:
Các số đã cho là số hữu tỉ vì mỗi số đó đều viết được dưới dạng phân số.
Cụ thể là:
Do các số trên là số hữu tỉ nên ta kí hiệu được:
‒5 ∈ ℚ; 0 ∈ ℚ; ‒0,41 ∈ ℚ; ∈ ℚ.
Ví dụ 2. Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) ℕ ⊂ ℤ ⊂ ℚ;
b) Nếu a ∈ℕ thì a ∈ℤ;
c) Nếu a ∈ ℕ thì a ∈ ℚ;
d) ℕ ∈ ℤ ∈ ℚ;
e) Nếu a ∈ℤ thì a ∉ ℚ;
f) Nếu a ∈ ℚ thì a ∈ℕ.
Hướng dẫn giải:
+ Ta có:
Tập số tự nhiên ℕ = {0; 1; 2; 3; …}.
Tập số nguyên ℤ = {…; ‒2; ‒1; 0; 1; 2; …}.
Tập số hữu tỉ ℚ = {…; ‒2; ‒1,5; ‒1; 0; 1; 1,5; …}
Ta sử dụng kí hiệu ⊂ để so sánh giữa các tập hợp với nhau. Do đó ℕ ⊂ℤ ⊂ ℚ.
Vậy a) đúng và d) sai.
+ Vì ℕ ⊂ ℤ ⊂ ℚ nên nếu a ∈ℕ thì a ∈ℤ và a ∈ ℚ.
Suy ra b), c) đúng.
+ Vì ℤ ⊂ ℚ nên nếu a ∈ℤ thì a ∈ ℚ.
Suy ra e) sai.
+ Ta lấy ví dụ a = 1,5 ∈ ℚ nhưng 1,5 không phải số tự nhiên nên 1,5 ∉ℕ.
Do đó f) sai.
................................
................................
................................
Số đối của một số hữu tỉ (cách giải + bài tập)
1. Phương pháp giải
Mỗi số hữu tỉ đều có một số đối. Vậy để tìm được số đối của một số hữu tỉ ta cần nắm được kiến thức sau:
+ Số đối của số hữu tỉ (b ≠ 0) là số hữu tỉ (b ≠ 0) .
+ Trên trục số, hai điểm biểu diễn của hai số hữu tỉ đối nhau là a và ‒a nằm về hai phía khác nhau so với điểm O và có cùng khoảng cách đến O.
Chú ý:
+ Số đối của số ‒a là số a, tức là ‒(‒a) = a.
+ Số đối của số 0 là số 0.
2. Ví dụ minh hoạ
Ví dụ 1. Tìm số đối của các số sau: 1,3; ; ; .
Hướng dẫn giải
Số đối của số 1,3 là ‒1,3;
Số đối của số là .
Số đối của số là .
Số đối của số là .
Ví dụ 2. Cho các cặp số hữu tỉ sau:
2,5 và ;
và ‒1,5;
và ;
‒0,5 và .
Có bao nhiêu cặp số đối nhau?
Hướng dẫn giải
Số đối của 2,5 là ‒2,5 = nên 2,5 và không phải là hai số đối nhau.
Số đối của là nên và ‒1,5 là hai số đối nhau.
Số đối của là nên và là hai số đối nhau.
Số đối của ‒0,5 là 0,5 = nên ‒0,5 và là hai số đối nhau.
Vậy có 3 cặp số đối nhau.
................................
................................
................................
Xem thêm các dạng bài tập Toán 7 hay, chi tiết khác:
- Các dạng bài tập Số thực
- Các dạng bài tập Góc và đường thẳng song song
- Các dạng bài tập Các hình khối trong thực tiễn
- Các dạng bài tập Tam giác bằng nhau
- Các dạng bài tập Thu thập và biểu diễn dữ liệu
- Các dạng bài tập Biểu thức đại số và đa thức một biến
- Các dạng bài tập Quan hệ giữa các yếu tố trong một tam giác
- Các dạng bài tập Xác suất của biến cố
Lời giải bài tập lớp 7 sách mới:
- Giải bài tập Lớp 7 Kết nối tri thức
- Giải bài tập Lớp 7 Chân trời sáng tạo
- Giải bài tập Lớp 7 Cánh diều
Tủ sách VIETJACK shopee lớp 6-8 cho phụ huynh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Lý thuyết - Bài tập Toán lớp 7 có đầy đủ Lý thuyết và các dạng bài có lời giải chi tiết được biên soạn bám sát nội dung chương trình sgk Đại số 7 và Hình học 7.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 7 Global Success
- Giải Tiếng Anh 7 Friends plus
- Giải sgk Tiếng Anh 7 Smart World
- Giải Tiếng Anh 7 Explore English
- Lớp 7 - Kết nối tri thức
- Soạn văn 7 (hay nhất) - KNTT
- Soạn văn 7 (ngắn nhất) - KNTT
- Giải sgk Toán 7 - KNTT
- Giải sgk Khoa học tự nhiên 7 - KNTT
- Giải sgk Lịch Sử 7 - KNTT
- Giải sgk Địa Lí 7 - KNTT
- Giải sgk Giáo dục công dân 7 - KNTT
- Giải sgk Tin học 7 - KNTT
- Giải sgk Công nghệ 7 - KNTT
- Giải sgk Hoạt động trải nghiệm 7 - KNTT
- Giải sgk Âm nhạc 7 - KNTT
- Lớp 7 - Chân trời sáng tạo
- Soạn văn 7 (hay nhất) - CTST
- Soạn văn 7 (ngắn nhất) - CTST
- Giải sgk Toán 7 - CTST
- Giải sgk Khoa học tự nhiên 7 - CTST
- Giải sgk Lịch Sử 7 - CTST
- Giải sgk Địa Lí 7 - CTST
- Giải sgk Giáo dục công dân 7 - CTST
- Giải sgk Công nghệ 7 - CTST
- Giải sgk Tin học 7 - CTST
- Giải sgk Hoạt động trải nghiệm 7 - CTST
- Giải sgk Âm nhạc 7 - CTST
- Lớp 7 - Cánh diều
- Soạn văn 7 (hay nhất) - Cánh diều
- Soạn văn 7 (ngắn nhất) - Cánh diều
- Giải sgk Toán 7 - Cánh diều
- Giải sgk Khoa học tự nhiên 7 - Cánh diều
- Giải sgk Lịch Sử 7 - Cánh diều
- Giải sgk Địa Lí 7 - Cánh diều
- Giải sgk Giáo dục công dân 7 - Cánh diều
- Giải sgk Công nghệ 7 - Cánh diều
- Giải sgk Tin học 7 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 7 - Cánh diều
- Giải sgk Âm nhạc 7 - Cánh diều