Đa thức một biến. Nghiệm của đa thức một biến (Lý thuyết Toán lớp 7) - Cánh diều

Với tóm tắt lý thuyết Toán 7 Bài 2: Đa thức một biến. Nghiệm của đa thức một biến hay nhất, chi tiết sách Cánh diều sẽ giúp học sinh lớp 7 nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 7.

Đa thức một biến. Nghiệm của đa thức một biến (Lý thuyết Toán lớp 7) - Cánh diều

Lý thuyết Đa thức một biến. Nghiệm của đa thức một biến

I. Đơn thức một biến. Đa thức một biến

Quảng cáo

1. Đơn thức một biến

– Đơn thức một biến là biểu thức đại số chỉ gồm một số hoặc một tích của một số với luỹ thừa có số mũ nguyên dương của biến đó.

Chẳng hạn: x2, 2x3 là các đơn thức một biến x.

Chú ý:

+ Mỗi đơn thức (một biến x) nếu không phải là một số thì có dạng axk, trong đó a là số thực khác 0 và k là số nguyên dương. Lúc đó, số a được gọi là hệ số của đơn thức axk.

+ Để thuận tiện cho việc thực hiện các phép tính (trên các đơn thức, đa thức, …), một số thực khác 0 được coi là đơn thức với số mũ của biến bằng 0.

Quảng cáo

Ví dụ: Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

a) x + 1 là đơn thức một biến x;

b) 2x2 là đơn thức một biến x;

c) 0 không là đơn thức một biến.

Hướng dẫn giải

a) Sai. Vì đơn thức một biến chỉ gồm một số hoặc một tích của một số với luỹ thừa của biến đó nên x2 + 1 không phải là đơn thức một biến mà là đa thức một biến.

b) Đúng. Vì 2x2 là tích của 2 với luỹ thừa 2 của biến x nên 2x2 là đơn thức một biến x.

c) Sai. Vì một số cũng là đơn thức nên 0 là đơn thức một biến.

2. Đa thức một biến

– Đa thức một biến là tổng những đơn thức của cùng một biến.

Chẳng hạn: 3x2 + 2x là đa thức của biến x.

Quảng cáo

Chú ý:

+ Mỗi số được xem là một đa thức (một biến).

+ Số 0 được gọi là đa thức không.

+ Mỗi đơn thức cũng là một đa thức.

+ Thông thường ta kí hiệu đa thức một biến x là P(x), Q(x), A(x), B(x), …

Ví dụ: Biểu thức nào sau đây là đa thức một biến x?

a) x2 – 9;

b) 2022;

c) 3x + y;

d) 25x2 + 2x + 1.

Hướng dẫn giải

a) x2 – 9 là đa thức một biến x vì là hiệu của 2 đơn thức một biến x là x2 và 9.

Quảng cáo

b) 2022 là một số nên cũng được xem là một đa thức một biến.

c) 3x + y không phải là đa thức một biến x vì có cả biến y.

d) 25x2 + 2x + 1 không phải là đa thức một biến x vì 25x2 không phải là tích của một số với luỹ thừa có số mũ nguyên dương của biến x.

II. Cộng trừ đơn thức có cùng số mũ của biến

– Để cộng (trừ) hai đơn thức có cùng số mũ của biến, ta cộng (hay trừ) hai hệ số với nhau và giữ nguyên phần biến:

• axk + bxk = (a + b)xk;

• axk – bxk = (a – b)xk (k ∈ℕ*).

Ví dụ: Thực hiện mỗi phép tính sau:

a) 13x2 + 7x2;

b) 4x3 – 3x3;

c) a4 + 1,5a4 + 0,5a4.

Hướng dẫn giải

a) 13x2 + 7x2 = (13 + 7)x2 = 20x2;

b) 4x3 – 3x3 = (4 – 3)x3 = 1.x3 = x3;

c) a4 + 1,5a4 + 0,5a4 = (1 + 1,5 + 0,5)a4 = 3a4.

III. Sắp xếp đa thức một biến

1. Thu gọn đa thức

Thu gọn đa thức một biến là làm cho đa thức đó không còn hai đơn thức nào có cùng số mũ của biến.

Ví dụ: Thu gọn đa thức:

a) P(x) = 3x2 – 4x2 + x3 + 3x3 – 4x + x + 1;

b) Q(x) = 2 – 3,5x4 – 5x2 + 3x2 + x + 72x4 – 2x3 – 1.

Hướng dẫn giải

a) P(x) = 3x2 – 4x2 + x3 + 3x3 – 4x + x + 1

= (3 – 4)x2 + (1 + 3)x3 + (–4 + 1)x + 1

= –x2 + 4x3 – 3x + 1

Vậy dạng thu gọn của đa thức P(x) là –x2 + 4x3 – 3x + 1.

b) Q(x) = 2 – 3,5x4 – 5x2 + 3x2 + x + 72x4 – 2x3 – 1

= (2 – 1) + (–3,5x4 + 72x4) + (– 5x2 + 3x2) + x – 2x3

= 1 + 3,5+72x4 + (– 5 + 3)x2 + x – 2x3

= 1 + 0x4 – 2x2 + x – 2x3

= 1 – 2x2 + x – 2x3

Vậy dạng thu gọn của đa thức Q(x) là 1 – 2x2 + x – 2x3.

2. Sắp xếp một đa thức

– Sắp xếp đa thức (một biến) theo số mũ giảm dần (hoặc tăng dần) của biến là sắp xếp các đơn thức trong dạng thu gọn của đa thức đó theo số mũ giảm dần (hoặc tăng dần) của biến.

Chú ý: Trong dạng thu gọn của đa thức, hệ số của mỗi đơn thức được gọi là hệ số của đa thức đó.

Ví dụ: Sắp xếp đa thức A(x) = 3x2 + 5x4 – x5 + 2x – 1 theo số mũ giảm dần của biến.

Hướng dẫn giải

A(x) = 3x2 + 5x4 – x5 + 2x – 1

= –x5 + 5x4 + 3x2 + 2x – 1.

Vậy sắp xếp đa thức A(x) theo số mũ giảm dần của biến ta được A(x) = –x5 + 5x4 + 3x2 + 2x – 1.

Ví dụ: Cho đa thức P(x) = 3x2 + 5x3 – 10x + 2x3 – 8x2 + 9 + 6x.

Hãy thu gọn sau đó sắp xếp đa thức theo số mũ giảm dần của biến.

Hướng dẫn giải

P(x) = 3x2 + 5x3 – 10x + 2x3 – 8x2 + 9 + 6x

= (5x3 + 2x3) + (3x2 – 8x2) + (–10x + 6x) + 9

= 7x3 – 5x2 – 4x + 9

Vậy P(x) = = 7x3 – 5x2 – 4x + 9.

IV. Bậc của đa thức một biến

– Bậc của đa thức một biến (khác đa thức không, đa thu gọn) là số mũ cao nhất của biến trong đa thức đó.

Chú ý:

+ Trong dạng thu gọn của đa thức, hệ số của luỹ thừa với số mũ cao nhất của biến còn gọi là hệ số cao nhất của đa thức; số hạng không chứa biến còn gọi là hệ số tự do của đa thức.

+ Một số khác 0 là đa thức bậc 0.

+ Đa thức không (số 0) không có bậc.

Ví dụ: Cho đa thức P(x) = x2 + 2x2 + 6x + 2x – 3.

a) Sắp xếp đa thức P(x) theo số mũ giảm dần của biến;

b) Tìm bậc của đa thức P(x);

c) Tìm hệ số cao nhất và hệ số tự do của đa thức P(x).

Hướng dẫn giải

a) P(x) = x2 + 2x2 + 6x + 2x – 3

= (x2 + 2x2) + (6x + 2x) – 3

= (1 + 2)x2 + (6 + 2)x – 3

= 3x2 + 8x – 3

Vậy P(x) = 3x2 + 8x – 3.

b) Bậc của đa thức P(x) là 2 vì số mũ cao nhất của x trong đa thức P(x) là 2.

c) Đa thức P(x) có hệ số cao nhất là 3 và hệ số tự do là –3.

V. Nghiệm của đa thức một biến

– Giá trị của đa thức P(x) tại x = a được kí hiệu là P(a).

– Nếu tại x = a, đa thức P(x) có giá trị bằng 0 thì a (hoặc x = a) gọi là một nghiệm của đa thức đó.

Chú ý:

• x = a là nghiệm của đa thức P(x) nếu P(a) = 0.

• Một đa thức (khác đa thức không) có thể có một nghiệm, hai nghiệm, … hoặc không có nghiệm. Số nghiệm của một đa thức không vượt quá bậc của đa thức đó.

Ví dụ: Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

a) x = 1 là nghiệm của đa thức A(x) = 2x – 2;

b) y = 3 là nghiệm của đa thức B(y) = 4y – 3;

c) z = 1 không là nghiệm của đa thức C(z) = z2 + 1.

Hướng dẫn giải

a) Đúng. Vì A(1) = 2.1 – 2 = 0 nên x = 1 là nghiệm của đa thức A(x).

b) Sai. Vì B(3) = 4.3 – 3 = 9 ≠ 0 nên y = 3 không phải là nghiệm của B(y).

c) Đúng. Vì C(1) = 12 + 1 = 2 ≠ 0 nên z = 1 không phải là nghiệm của C(z).

Ví dụ: Cho P(x) = x2 – 1. Tìm nghiệm của đa thức P(x).

Hướng dẫn giải

Ta có: P(x) = 0

Suy ra x2 – 1 = 0

Do đó x2 = 1

Hay x2 = 12 = (–1)2

Suy ra x = 1 hoặc x = –1.

Vậy P(x) có nghiệm là x = 1, x = –1.

Bài tập Đa thức một biến. Nghiệm của đa thức một biến

Bài 1. Biểu thức nào sau đây là đa thức một biến? Tìm biến và bậc của đa thức đó.

a) –3x;

b) x2 + x – 1;

c) 4x+1 + x2;

d) y2 + 2x + 1y;

e) 2z + 3;

f) –t2023 + 3t2022 + 1.

Hướng dẫn giải

a) –3x là đa thức một biến x có bậc là 1;

b) x2 + x – 1 là đa thức một biến x có bậc là 2;

c) 4x+1 + x2 không phải là đa thức một biến;

d) y2 + 2x + 1ykhông phải là đa thức một biến;

e) 2z + 3 là đa thức một biến z có bậc là 1;

f) –t2023 + 3t2022 + 1 là đa thức một biến t có bậc là 2023.

Bài 2. Thực hiện phép tính:

a) 2x2 + 3x2 – 5x2;

b) –10y2 + 0,5y2 + y2;

c) –21z2 – 10z2 + 99z2;

Hướng dẫn giải

a) 2x2 + 3x2 – 5x2 = (2 + 3 – 5)x2 = 0x2 = 0.

b) –10y2 + 0,5y2 + y2 = (–10 + 0,5 + 1)y2 = –8,5y2.

c) –21z2 – 10z2 + 99z2 = (–21 – 10 + 99)z2 = 68z2.

Bài 3. Thu gọn và sắp xếp mỗi đa thức sau đây theo luỹ thừa giảm của biến rồi tìm bậc, hệ số cao nhất và hệ số tự do của mỗi đa thức đó.

a) P(x) = –2 + 4x5 – 2x3 – 4x5 + 3x + 3.

b) Q(x) = –5x3 + 4 – 3x + 4x3 + x2 + 6x – 3.

Hướng dẫn giải

a) P(x) = –2 + 4x5 – 2x3 – 4x5 + 3x + 3

= (4x5 – 4x5) – 2x3 + 3x + (3 – 2)

= –2x3 + 3x + 1

Bậc của P(x) là 3 vì số mũ cao nhất của biến bằng 3.

Hệ số cao nhất của P(x) là –2 vì hệ số của lũy thừa với số mũ cao nhất của biến bằng –2.

Hệ số tự do của P(x) là 1 vì số hạng không chứa biến của đa thức bằng 1.

b) Q(x) = –5x3 + 4 – 3x + 4x3 + x2 + 6x – 3

= (–5x3 + 4x3) + x2 + (–3x + 6x) + (4 – 3)

= –x3 + x2 + 3x + 1

Bậc của Q(x) là 3 vì số mũ cao nhất của biến bằng 3.

Hệ số cao nhất của Q(x) là –1 vì hệ số của lũy thừa với số mũ cao nhất của biến bằng –1.

Hệ số tự do của Q(x) là 1 vì số hạng không chứa biến của đa thức bằng 1.

Bài 4. Cho đa thức A(x) = x3 + 2x2 + x. Trong các số –2, –1, 0, 1, 2 thì số nào là nghiệm của đa thức A(x)?

Hướng dẫn giải

Ta có: đa thức A(x) = x3 + 2x2 + x

• A(–2) = (–2)3 + 2.(–2)2 + (–2)

= –8 + 8 – 2 = –2 ≠ 0.

Do đó x = –2 không phải là nghiệm của A(x).

• A(–1) = (–1)3 + 2.(–1)2 + (–1)

= –1 + 2 – 1 = 0.

Do đó x = –1 là nghiệm của A(x).

• A(0) = 03 + 2.02 + 0 = 0

Do đó x = 0 là nghiệm của A(x).

• A(1) = 13 + 2.12 + 1

= 1 + 2 + 1 = 4 ≠ 0.

Do đó x = 1 không phải là nghiệm của A(x).

• A(2) = 23 + 2.22 + 2

= 8 + 8 + 2 = 16 ≠ 0.

Do đó x = 2 không phải là nghiệm của A(x).

Vậy x = –1 và x = 0 là hai nghiệm của đa thức A(x).

Bài 5. Người ta định dùng những viên gạch đặc Tuynel với kích thước như nhau để xây một bức tường (có dạng hình hộp chữ nhật) dày 20 (cm), dài 6 (m) và cao x (m). Số gạch đã có là 500 viên.

a) Tìm đa thức (biến x) biểu thị số gạch cần mua thêm để xây tường, biết rằng cứ xây mỗi mét khối tường thì cần 215 viên gạch. Xác định bậc và hệ số tự do của đa thức đó.

b) Nếu chỉ dùng số gạch sẵn có thì xây được bức tường cao khoảng bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?

Hướng dẫn giải

a) Đổi 20 cm = 0,2 m.

Bức tường có dạng hình hộp chữ nhật với ba kích thước là 0,2 (m); 6 (m) và x (m).

Thể tích của nó là 0,2. 6. x = 1,2x (m3).

Mỗi mét khối tường xây hết 215 viên gạch nên số gạch cần dùng để xây bức tường là:

215. 1,2x = 258x (viên).

Số gạch đã có là 500 viên.

Vậy số gạch cần mua thêm là F(x) = 258x – 500.

b) Nếu chỉ dùng số gạch sẵn có để xây tường thì số gạch mua thêm là 0.

Tức là 258x – 500 = 0.

Do đó 258x = 500

Suy ra x ≈ 1,9 (m).

Vậy nếu chỉ dùng số gạch có sẵn thì xây được bức tường cao khoảng 1,9 m.

Học tốt Đa thức một biến. Nghiệm của đa thức một biến

Các bài học để học tốt Đa thức một biến. Nghiệm của đa thức một biến Toán lớp 7 hay khác:

Xem thêm tóm tắt lý thuyết Toán lớp 7 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 7 hay khác:

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 7

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và khóa học dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Loạt bài Giải bài tập Toán lớp 7 của chúng tôi được biên soạn bám sát sgk Toán 7 Tập 1 & Tập 2 bộ sách Cánh diều (NXB Đại học Sư phạm).

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


Giải bài tập lớp 7 Cánh diều khác
Tài liệu giáo viên