Các dạng bài tập Phương trình mũ chọn lọc, có đáp án
Phần Phương trình mũ Toán lớp 12 với các dạng bài tập chọn lọc có trong Đề thi THPT Quốc gia và trên 100 bài tập trắc nghiệm chọn lọc, có đáp án. Vào Xem chi tiết để theo dõi các dạng bài Phương trình mũ hay nhất tương ứng.
Các dạng bài tập Phương trình mũ chọn lọc, có đáp án
Bài giảng: Cách giải phương trình mũ - Cô Nguyễn Phương Anh (Giáo viên VietJack)
- 6 dạng bài tập Phương trình mũ trong đề thi Đại học có lời giải Xem chi tiết
- Dạng 1: Phương pháp đưa về cùng cơ số và phương pháp lôgarit hóa Xem chi tiết
- Trắc nghiệm Phương pháp đưa về cùng cơ số và phương pháp lôgarit hóa Xem chi tiết
- Dạng 2: Phương pháp đặt ẩn phụ trong phương trình mũ Xem chi tiết
- Trắc nghiệm phương pháp đặt ẩn phụ trong phương trình mũ Xem chi tiết
- Dạng 3: Sử dụng tính đơn điệu để giải phương trình mũ Xem chi tiết
- Trắc nghiệm Sử dụng tính đơn điệu để giải phương trình mũ Xem chi tiết
- Giải phương trình mũ chứa tham số Xem chi tiết
Bài tập trắc nghiệm
- Bài tập hàm số mũ và logarit nâng cao Xem chi tiết
- 200 bài tập trắc nghiệm Hàm số mũ, lũy thừa, Lôgarit có lời giải (cơ bản - phần 1) Xem chi tiết
- 200 bài tập trắc nghiệm Hàm số mũ, lũy thừa, Lôgarit có lời giải (cơ bản - phần 2) Xem chi tiết
- 200 bài tập trắc nghiệm Hàm số mũ, lũy thừa, Lôgarit có lời giải (cơ bản - phần 3) Xem chi tiết
- 200 bài tập trắc nghiệm Hàm số mũ, lũy thừa, Lôgarit có lời giải (cơ bản - phần 4) Xem chi tiết
- 200 bài tập trắc nghiệm Hàm số mũ, lũy thừa, Lôgarit có lời giải (cơ bản - phần 5) Xem chi tiết
- 200 bài tập trắc nghiệm Hàm số mũ, lũy thừa, Lôgarit có lời giải (nâng cao - phần 1) Xem chi tiết
- 200 bài tập trắc nghiệm Hàm số mũ, lũy thừa, Lôgarit có lời giải (nâng cao - phần 2) Xem chi tiết
- 200 bài tập trắc nghiệm Hàm số mũ, lũy thừa, Lôgarit có lời giải (nâng cao - phần 3) Xem chi tiết
- 200 bài tập trắc nghiệm Hàm số mũ, lũy thừa, Lôgarit có lời giải (nâng cao - phần 4) Xem chi tiết
- 200 bài tập trắc nghiệm Hàm số mũ, lũy thừa, Lôgarit có lời giải (nâng cao - phần 5) Xem chi tiết
Phương pháp đưa về cùng cơ số và phương pháp lôgarit hóa
A. Phương pháp giải & Ví dụ
1. Phương trình mũ cơ bản.
Phương trình mũ cơ bản có dạng: ax = m (1).
Nếu m > 0 thì phương trình (1) có nghiệm duy nhất x = logam.
Nếu m ≤ 0 thì phương trình (1) vô nghiệm.
2. Phương pháp đưa về cùng cơ số.
Với a > 0 và a ≠ 1 ta có af(x) = ag(x) ⇔ f(x) = g(x).
3. Phương pháp lôgarit hoá.
af(x) = b ⇔ f(x) = logab
af(x) = bg(x) ⇔ f(x) = g(x)logab
logaf(x) = b ⇔ f(x) = ab
Ví dụ minh họa
Bài 1: Giải phương trình sau
Lời giải:
Bài 2: Giải phương trình sau
Lời giải:
Bài 3: Giải phương trình sau
Lời giải:
Phương pháp đặt ẩn phụ trong phương trình mũ
A. Phương pháp giải & Ví dụ
Ta thường sử dụng 1 ẩn phụ để chuyển phương trình ban đầu thành 1 phương trình với 1 ẩn phụ.
Các phép đặt ẩn phụ thường gặp sau:
Dạng 1: Phương trình αk + αk-1 a(k-1)x + ... + α1 ax + α0 = 0
Khi đó ta đặt t = ax điều kiện t > 0, ta được αk tk + αk-1 tk-1 + ... + α1 t + α0 = 0
Mở rộng: Nếu đặt t = af(x) , điều kiện hẹp t > 0.
Dạng 2: Phương trình α1 ax + α2 ax + α3 = 0 với a.b = 1
Mở rộng: Với a.b = 1 thì khi đặt t = af(x), điều kiện hẹp t > 0, suy ra
Dạng 3: Phương trình α1 a2x + α2 (a.b)x + α3 b2x = 0 khi đó chia hai vế của phương trình cho b2x > 0 (hoặc a2x, (a.b)x), điều kiện t < 0, ta được
, điều kiện t < 0 , ta được α1 t2 + α2 t+α3 = 0
Mở rộng: Với phương trình mũ có chứa các nhân tử: a2f, b2f, (a.b)2f, ta thực hiện theo các bước sau:
+ Chia 2 vế của phương trình cho b2f > 0 (hoặc a2f,(a.b)f)
+ Đặt điều kiện hẹp t > 0
Ví dụ minh họa
Bài 1: Giải phương trình 9x-5.3x+6=0
Lời giải:
Đặt t=3x (t > 0), khi đó phương trình đã cho tương đương với
Bài 2: Giải phương trình sau: (7+4√3)x-3(2-√3)x+2=0
Lời giải:
Nhận xét rằng 7+4√3=(2+√3)2; (2+√3)(2-√3)=1
Do đó nếu đặt t=(2+√3)x điều kiện t > 0 thì (2-√3)x=1/t và (7+4√3)x = t2
Khi đó phương trình đã cho tương đương với
Vậy phương trình có nghiệm x=0
Bài 3: Giải phương trình sau: (√2-1)x+(√2+1)x-2√2=0
Lời giải:
Đặt t=(√2+1)x ta có phương trình đã cho tương đương:
Sử dụng tính đơn điệu để giải phương trình mũ
A. Phương pháp giải & Ví dụ
Hướng 1:
• Bước 1. Chuyển phương trình về dạng f(x)=k.
• Bước 2. Khảo sát sự biến thiên của hàm số f(x) trên D. Khẳng định hàm số đơn điệu
• Bước 3. Nhận xét:
+ Với x = x0 ⇔ f(x) = f(x0) = k do đó x = x0 là nghiệm.
+ Với x > x0 ⇔ f(x) > f(x0) = k do đó phương trình vô nghiệm.
+ Với x < x0 ⇔ f(x) < f(x0) = k do đó phương trình vô nghiệm.
• Bước 4. Kết luận vậy x = x0 là nghiệm duy nhất của phương trình.
Hướng 2:
• Bước 1. Chuyển phương trình về dạng f(x) = g(x).
• Bước 2. Khảo sát sự biến thiên của hàm số y = f(x) và y = g(x). Khẳng định hàm số y = f(x) là hàm số đồng biến còn y = g(x) là hàm số nghịch biến hoặc là hàm hằng.
• Bước 3. Xác đinh x0 sao cho f(x0) = g(x0 .
• Bước 4. Kết luận vậy x = x0 là nghiệm duy nhất của phương trình.
Hướng 3:
• Bước 1. Chuyển phương trình về dạng f(u) = f(v).
• Bước 2. Khảo sát sự biến thiên của hàm số y = f(x). Khẳng định hàm số đơn điệu.
• Bước 3. Khi đó f(u) = f(v) ⇔ u = v.
Ví dụ minh họa
Bài 1: Giải phương trình x+2.3log2 x = 3 (*).
Lời giải:
Ta có: (*) ⇔ 2.3log2x = 3-x (1).
Nhận xét:
+ Vế trái của phương trình là hàm số đồng biến.
+ Vế phải của phương trình là hàm số nghịch biến.
Do đó nếu phương trình có nghiệm thì nghiệm đó là nghiệm duy nhất.
Mặt khác: x = 1 là nghiệm của phương trình. Phương trình có nghiệm duy nhất x = 1.
Vậy tập nghiệm của phương trình là: S={1}.
Bài 2: Giải phương trình
Lời giải:
⇒ x2 - 3x + 2 = u2 ⇒ 3x - x2 - 1 = 1 - u2.
Khi đó phương trình (*) có dạng
Xét hàm số:
+ Miền xác định: D = [0;+∞).
+ Đạo hàm ∀x ∈ D. Suy ra hàm số đồng biến trên D.
Mặt khác f(1) = log3 (1+2) + (1/5).5 = 2.
Do đó, phương trình (1) được viết dưới dạng
Bài 3: Giải phương trình 2x2-x + 93-2x + x2 + 6 = 42x-3 + 3x - x2 + 5x (*).
Lời giải:
Ta có: (*) ⇔ 2x2-x + 36-4x + x2 + 6 = 24x-6 + 3x-x2 + 5x.
⇔ 2x2-x + x2 - x - 3x-x2 = 24x-6 + 4x - 6 - 36-4x.
ta được 2u + u - 3-u = 2v + v - 3-v.
Xét hàm số:
⇒ f'(t) là hàm số đồng biến trên R, mà f(u)=f(v) ⇔ u=v.
Ta có phương trình:
Vậy tập nghiệm của phương trình là: S={1;6}.
Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:
- Tổng hợp lý thuyết Chương Hàm số lũy thừa, Hàm số mũ, hàm số logarit
- Chủ đề: Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit
- Chủ đề: Bất phương trình mũ
- Chủ đề: Phương trình logarit
- Chủ đề: Bất phương trình logarit
- Bài tập đồ thị hàm số mũ và logarit
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Lớp 12 Kết nối tri thức
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT
- Lớp 12 Chân trời sáng tạo
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST
- Lớp 12 Cánh diều
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều