Top 8 Đề kiểm tra Toán 12 Chương 2 Hình học có đáp án
Dưới đây là danh sách Top 8 Đề kiểm tra Toán 12 Chương 2 Hình học có đáp án, cực sát đề chính thức gồm các đề kiểm tra 15 phút, 45 phút, 1 tiết. Hi vọng bộ đề thi này sẽ giúp bạn ôn luyện & đạt điểm cao trong các bài thi Toán lớp 12.
Bộ Đề thi Toán 12 Chương 2 Hình học
Top 4 Đề kiểm tra 15 phút Toán 12 Chương 2 Hình học có đáp án
Đề kiểm tra 15 phút Toán 12 Chương 2 Hình học có đáp án (Đề 1)
Đề kiểm tra 15 phút Toán 12 Chương 2 Hình học có đáp án (Đề 2)
Đề kiểm tra 15 phút Toán 12 Chương 2 Hình học có đáp án (Đề 3)
Đề kiểm tra 15 phút Toán 12 Chương 2 Hình học có đáp án (Đề 4)
Top 4 Đề kiểm tra 1 tiết Toán 12 Chương 2 Hình học có đáp án
Đề kiểm tra 45 phút Toán 12 Chương 2 Hình học có đáp án (Đề 1)
Đề kiểm tra 45 phút Toán 12 Chương 2 Hình học có đáp án (Đề 2)
Đề kiểm tra 45 phút Toán 12 Chương 2 Hình học có đáp án (Đề 3)
Đề kiểm tra 45 phút Toán 12 Chương 2 Hình học có đáp án (Đề 4)
Đề kiểm tra 15 phút Toán 12 Chương 2 Hình học
Thời gian làm bài: 15 phút
Câu 1. Cho một khối trụ có chiều cao bằng 8 cm, bán kính đường tròn đáy bằng 6 cm. Cắt khối trụ bởi một mặt phẳng song song với trục và cách trục 4 cm. Diện tích của thiết diện được tạo thành là?
Câu 2. Trong không gian, cho hình lăng trụ tam giác đều ABC.A'B'C' có cạnh đáy bằng 3a và cạnh bên bằng 4a. Tính diện tích toàn phần của khối trụ ngoại tiếp khối lăng trụ tam giác đều đó.
Câu 3. Cho hình vuông ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của AB và CD. Khi quay hình vuông ABCD quanh MN thành một hình trụ. Gọi (S) là mặt cầu có diện tích bằng diện tích toàn phần của hình trụ, tính bán kính của mặt cầu (S)?
Câu 4. Một cái phễu rỗng phần trên có kích thước như hình vẽ. Tính diện tích xung quanh của phễu?
Đáp án & Hướng dẫn giải
Câu 1. Cho một khối trụ có chiều cao bằng 8 cm, bán kính đường tròn đáy bằng 6 cm. Cắt khối trụ bởi một mặt phẳng song song với trục và cách trục 4 cm. Diện tích của thiết diện được tạo thành là?
Lời giải
Giả sử thiết diện là hình chữ nhật MNPQ như hình vẽ.
Với O'H = 4 là khoảng cách từ trục đến thiết diện và OO' = h = 8; O'P = O'Q = rd = 6
Câu 2. Trong không gian, cho hình lăng trụ tam giác đều ABC.A'B'C' có cạnh đáy bằng 3a và cạnh bên bằng 4a.Tính diện tích toàn phần của khối trụ ngoại tiếp khối lăng trụ tam giác đều đó.
Lời giải
Gọi O và O’ là tâm của tam giác ABC và A’B’C’.
Câu 3. Cho hình vuông ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của AB và CD. Khi quay hình vuông ABCD quanh MN thành một hình trụ. Gọi (S) là mặt cầu có diện tích bằng diện tích toàn phần của hình trụ, tính có bán kính của mặt cầu (S)?
Lời giải
Mặt trụ tạo bởi hình vuông ABCD khi quay quanh MN có đường cao h = a và bán kính đáy
Diện tích 1 đáy và diện tích xung quanh của hình trụ là:
Nên có diện tích toàn phần của hình trụ:
Mặt cầu (S) có bán kính R có diện tích bằng Stp của mặt trụ nên:
Câu 4. Một cái phễu rỗng phần trên có kích thước như hình vẽ. Tính diện tích xung quanh của phễu?
Lời giải
Ta tách phễu thành một hình nón có đường sinh l = 17 cm, bán kính đường tròn đáy R = 8 cm và một hình trụ có đường cao h = 10 cm, bán kính đáy là R = 8cm.
Diện tích xung quanh của hình trụ là:
Sxq1 = 2πR.h = 2π.8.10 = 160π (cm2)
Diện tích xung quanh của hình nón là:
Sxq2 = πR.l = π.8.17 = 136π (cm2)
Do đó, diện tích xung quang của phễu là:
160π + 136π = 296π (cm2)
Đề kiểm tra 45 phút Toán 12 Chương 2 Hình học
Thời gian làm bài: 45 phút
I. Trắc nghiệm ( 6 điểm)
Câu 1. Cho mặt cầu S(O; R) và đường thẳng Δ. Biết khoảng cách từ O tới Δ bằng d. Đường thẳng Δ tiếp xúc với S(O; R) khi thỏa mãn điều kiện nào trong các điều kiện sau ?
A. d = R
B. d > R
C. d < R
D. d ≠ R
Câu 2. Cho đường tròn (C) ngoại tiếp một tam giác đều ABC có cạnh bằng a, chiều cao AH. Quay đường tròn (C) xung quanh trục AH, ta được một mặt cầu. Thể tích của khối cầu tương ứng là:
Câu 3. Một hình nón có thiết diện qua trục là một tam giác vuông cân có cạnh góc vuông bằng a. Tính diện tích xung quanh của hình nón.
Câu 4. Cắt khối nón bởi một mặt phẳng qua trục tạo thành một tam giác ABC đều có cạnh bằng a, biết B, C thuộc đường tròn đáy. Thể tích của khối nón là:
Câu 5. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy . Khi tam giác SAC quay quanh cạnh SA thì đường gấp khúc SAC tạo thành một hình nón tròn xoay. Thể tích của khối nón tròn xoay đó là:
Câu 6. Gọi l, h, R lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình trụ. Đẳng thức luôn đúng là?
A. l = h
B. R = h
C. R2 = h2 + l2
D. l2 = h2 + R2
Câu 7. Hình nón tròn xoay ngoại tiếp tứ diện đều cạnh a, có diện tích xung quanh là:
Câu 8. Tính thể tích của khối trụ biết bán kính đáy của hình trụ đó bằng a và thiết diện đi qua trục là một hình vuông.
II. Tự luận ( 4 điểm)
Câu 1. Cho hình nón tròn xoay có đỉnh là S, O là tâm của đường tròn đáy, đường sinh bằng và góc giữa đường sinh và mặt phẳng đáy bằng 60°. Diện tích xung quanh Sxq của hình nón và thể tích V của khối nón tương ứng là:
Câu 2. Tính bán kính của mặt cầu ngoại tiếp hình chóp tứ giác đều có cạnh đáy bằng a, cạnh bên bằng 2a.
Đáp án & Hướng dẫn giải
I. Trắc nghiệm ( 6 điểm)
Câu 1. Chọn A.
Đường thẳng Δ tiếp xúc với S( O; R) khi d = R.
Câu 2. Chọn C
AH là đường cao trong tam giác đều cạnh a nên .
Gọi O là tâm mặt cầu ngoại tiếp ΔABC, thì O ∈ AH và .
Bán kính mặt cầu được tạo thành khi quay đường tròn (C) quanh trục AH là .
Vậy thể tích của khối cầu tương ứng là:
Câu 3. Chọn B.
Thiết diện qua trục là một tam giác vuông cạnh a nên đường sinh của hình nón là l = a.
Đường kính của đường tròn đáy là:
và bán kính đáy là
Diện tích xung quanh của hình nón là .
Câu 4. Chọn C.
Bán kính đáy khối nón là .
Chiều cao khối nón là
(chính là chiều cao của tam giác đều cạnh a)
Suy ra, thể tích của khối nón là:
Câu 5. Chọn A.
Ta có:
Hình nón tròn xoay được tạo thành là một hình nón có bán kính đáy là R = AC, đường cao h = SA có thể tích là:
Câu 6. Chọn A.
Đường sinh và chiều cao của một hình trụ luôn bằng nhau nên đẳng thức đúng là l = h
Câu 7. Chọn C.
Khi đó, SO là trục của tam giác ABC nên SO⊥(ABC)
Gọi AO ∩ BC = H
Ta có:
Câu 8. Chọn A.
Theo bài ra thiết diện qua trục của hình trụ là hình vuông nên hình trụ có bán kính đáy là a, chiều cao 2a.
Do đó thể tích khối trụ là: V = πR2h = πa2.2a = 2πa3.
II. Tự luận ( 4 điểm)
Câu 1. Cho hình nón tròn xoay có đỉnh là S, O là tâm của đường tròn đáy, đường sinh bằng và góc giữa đường sinh và mặt phẳng đáy bằng 60°. Diện tích xung quanh Sxq của hình nón và thể tích V của khối nón tương ứng là:
Lời giải
Gọi A là một điểm thuộc đường tròn đáy hình nón.
Theo giải thiết ta có đường sinh và góc giữa đường sinh và mặt phẳng đáy là .
Trong tam giác vuông SAO, ta có:
Câu 2. Tính bán kính của mặt cầu ngoại tiếp hình chóp tứ giác đều có cạnh đáy bằng a, cạnh bên bằng 2a.
Lời giải
Cho hình chóp tứ giác đều S.ABCD.
Gọi H là tâm đáy thì SH là trục của hình vuông ABCD.
Gọi M là trung điểm của SD, trong mp (SDH) kẻ trung trực của đoạn SD cắt SH tại O. Suy ra; OS = OD (1)
Mà O thuộc trục SH của hình vuông ABCD nên:
OA = OB = OC = OD (2)
Từ (1) và (2) suy ra: OA = OB = OC = OD = OS
Do đó, O chính là tâm của mặt cầu ngoại tiếp hình chóp S.ABCD. Bán kính mặt cầu là R = SO
Ta có:
Xem thêm các Đề thi Toán 12 chọn lọc, có đáp án hay khác:
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Giáo án lớp 12 (các môn học)
- Giáo án điện tử lớp 12 (các môn học)
- Giáo án Toán 12
- Giáo án Ngữ văn 12
- Giáo án Vật Lí 12
- Giáo án Hóa học 12
- Giáo án Sinh học 12
- Giáo án Địa Lí 12
- Giáo án Lịch Sử 12
- Giáo án Lịch Sử 12 mới
- Giáo án GDCD 12
- Giáo án Kinh tế Pháp luật 12
- Giáo án Tin học 12
- Giáo án Công nghệ 12
- Giáo án GDQP 12
- Đề thi lớp 12 (các môn học)
- Đề thi Ngữ văn 12
- Đề thi Toán 12
- Đề thi Tiếng Anh 12 mới
- Đề thi Tiếng Anh 12
- Đề thi Vật Lí 12
- Đề thi Hóa học 12
- Đề thi Sinh học 12
- Đề thi Địa Lí 12
- Đề thi Lịch Sử 12
- Đề thi Giáo dục Kinh tế Pháp luật 12
- Đề thi Giáo dục quốc phòng 12
- Đề thi Tin học 12
- Đề thi Công nghệ 12