Sách bài tập Toán 6 Bài 10: Tính chất chia hết của một tổng
Sách bài tập Toán 6 Bài 10: Tính chất chia hết của một tổng
Bài 114 trang 20 sách bài tập Toán 6 Tập 1: Áp dụng tính chất chia hết, xét xem mỗi tổng (hiệu) sau có chia hết cho 6 không?
a. 42 + 54
b. 600 – 14
c. 120 + 48 + 20
d. 60 + 15 + 3
Lời giải:
a. Vì 42 ⋮ 6 và 54 ⋮ 6 nên ( 42 + 54 ) ⋮6
b. Vì 600 ⋮ 6 nhưng 14 không chia hết cho 6 nên (600 -14) không chia hết cho 6.
c. Vì 120 ⋮ 6, 48 ⋮ 6 nhưng 20 không chia hết cho 6 nên (120 + 48 + 20 ) không chia hết cho 6
d. Vì 60 ⋮ 6 và 15 + 3 = 18 ⋮ 6 nên ( 60 + 15 + 3) ⋮ 6
Bài 115 trang 20 sách bài tập Toán 6 Tập 1: Cho tổng A = 12 + 15 + 21 + x, với x ∈ N. Tìm điều kiện của x để A chia hết cho 3, để A không chia hết cho 3.
Lời giải:
Ta có: 12 ⋮ 3; 15 ⋮ 3; 21 ⋮3
Suy ra: A = (12 + 15 + 21 + x) ⋮3 khi x ⋮ 3
A = (12 + 15 + 21 + x) không chia hết cho 3 khi x không chia hết cho 3
Bài 116 trang 20 sách bài tập Toán 6 Tập 1: Khi chia số tự nhiên a cho 24, ta được số dư là 10. Hỏi số a có chia hết cho 2 không? Có chia hết cho 4 không?
Lời giải:
Ta có: a chia cho 24 được số dư là 10 và thương là k nên:
a = 24k + 10 (k ∈ N)
Vì 24 ⋮ 2 và 10 ⋮ 2 nên (24k + 10) ⋮ 2
Vì 24 ⋮ 4 và 10 không chia hết cho 4 nên (24k + 10) không chia hết cho 4
Bài 117 trang 20 sách bài tập Toán 6 Tập 1: Điền dấu “x” vào ô thích hợp:
Lời giải:
Bài 118 trang 20 sách bài tập Toán 6 Tập 1: Chứng tỏ rằng:
a. Trong hai số tự nhiên liên tiếp, có một số chia hết cho 2.
b. Trong ba số tự nhiên liên tiếp, có một số chia hết cho 3.
Lời giải:
a. Gọi hai số tự nhiên liên tiếp là a và a + 1
Nếu a chia hết cho 2 thì bài toán được chứng minh.
Nếu a không chia hết cho 2 thì a = 2k + 1 (k∈N)
Suy ra: a + 1 = 2k + 1 + 1 = 2k + 2
Ta có: 2k ⋮ 2; 2 ⋮ 2
Suy ra: (2k + 2) ⋮ 2 hay (a + 1) ⋮ 2
Vậy trong hai số tự nhiên liên tiếp, có một số chia hết cho 2
b. Gọi ba số tự nhiên liên tiếp là a, a + 1, a + 2
Nếu a chia hết cho 3 thì bài toán được chứng minh
Nếu a không chia hết cho 3 thì a = 3k + 1 hoặc a = 3k + 2 (k ∈ N)
Nếu a = 3k + 1 thì a + 2 = 3k + 1 + 2 = 3k + 3 ⋮ 3
(vì 3k ⋮ 3 và 3 ⋮ 3 nên 3k + 3 ⋮ 3)
Nếu a = 3k + 2 thì a + 1 = 3k + 2 + 1 = 3k + 3 ⋮ 3
(vì 3k ⋮ 3 và 3 ⋮ 3 nên 3k + 3 ⋮ 3)
Vậy trong ba số tự nhiên liên tiếp, có một số chia hết cho 3
Bài 119 trang 21 sách bài tập Toán 6 Tập 1: Chứng tỏ rằng:
a. Tổng của ba số tự nhiên liên tiếp là một số chia hết cho 3
b. Tổng của bốn số tự nhiên liên tiếp là một số không chia hết cho 4
Lời giải:
a. Gọi ba số tự nhiên liên tiếp là: a, a + 1, a + 2
Ta có: a + (a+ 1) + (a + 2) = (a + a + a) + (1+ 2) = 3a + 3
Vì 3 ⋮3 nên 3a⋮3, suy ra (3a + 3) ⋮3
Vậy tổng của ba số tự nhiên liên tiếp chia hết cho 3
b. Gọi bốn số tự nhiên liên tiếp là a, a + 1, a + 2, a + 3
Ta có; a + (a + 1) + (a + 2) + (a + 3)
= (a + a + a +a) +(1+ 2+3) = 4a + 6
Vì 4a ⋮ 4 nhưng 6 không chia hết cho 4, suy ra (4a + 6) không chia hết cho 4
Bài 120 trang 21 sách bài tập Toán 6 Tập 1: Chứng tỏ rằng số có dạng (aaaaaa) bao giờ cũng chia hết cho 7 ( chẳng hạn 333333 ⋮7)
Lời giải:
Ta có: (aaaaaa) = 111111.a = 3.7.11.13.37.a
Vì 3.7.11.13.37.a ⋮7 nên 111111.a ⋮7.
Vậy số có dạng (aaaaaa) bao giờ cũng chia hết cho 7
Bài 121 trang 21 sách bài tập Toán 6 Tập 1: Chứng tỏ rằng số có dạng (abcabc)bao giờ cũng chia hết cho 11 ( chẳng hạn 328328 ⋮11)
Lời giải:
Bài 122 trang 21 sách bài tập Toán 6 Tập 1: Chứng tỏ rằng lấy một số có hai chữ số, cộng với số gồm hai chữ số ấy viết theo thứ tự ngược lại, ta luôn luôn được một số chia hết cho 11 ( chẳng hạn 37 + 73 = 110, chia hết cho 11)
Lời giải:
Gọi số tự nhiên có hai chữ số là ab(a ≠0)
Số viết theo thứ tự ngược lại của ab là ba
Ta có: ab = 10a + b ; ba = 10b + a
Do đó: ab+ ba= (10a + b) + (10b + a) = 11a + 11b = 11.(a + b)
Vì 11.(a + b) ⋮ 11 nên ab + ba luôn chia hết cho 11
Bài 10.1 trang 21 sách bài tập Toán 6 Tập 1: Điền các từ thích hợp (chia hết, không chia hết) vào chỗ trống:
a) Nếu a ⋮ m, b ⋮ m, c ⋮ m thì tổng a + b + c ... cho m ;
b) Nếu a ⋮ 5, b ⋮ 5, c ∕⋮ 5 thì tích a.b.c ... cho 5 ;
c) Nếu a ⋮ 3 và b ∕⋮ 3 thì tích a.b .... cho 3.
Lời giải:
a) Chia hết ;
b) Chia hết ;
c) Chia hết.
Bài 10.2 trang 21 sách bài tập Toán 6 Tập 1: Chứng tỏ rằng nếu hai số có cùng số dư khi chia cho 7 thì hiệu của chúng chia hết cho 7
Lời giải:
Gọi a và b là hai số có cùng số dư r khi chia cho 7 (giả sử a ≥ b)
Ta có a = 7m + r, b = 7n + r (m, n ∈ N)
Khi đó a - b = (7m + r) - (7n + r) = 7m - 7n = 7.(m – n)
Ta có: 7 ⋮ 7 nên 7(m - n) ⋮ 7 hay a - b ⋮ 7
Bài 10.3 trang 21 sách bài tập Toán 6 Tập 1: Chứng tỏ rằng số có dạng aaa bao giờ cũng chia hết cho 37.
Lời giải:
Ta có: aaa = 100.a + 10.a + a = (100 + 10 + 1).a = 111.a = 3.37.a ⋮ 37 (điều phải chứng minh)
Bài 10.4 trang 21 sách bài tập Toán 6 Tập 1: Chứng tỏ rằng hiệu ab− ba (với a ≥ b) bao giờ cũng chia hết cho 9.
Lời giải:
Ta có: ab− ba = (10a + b) - (10b + a) = 9a - 9b = 9(a - b) chia hết cho 9 (điều phải chứng minh).
Xem thêm các bài giải sách bài tập Toán lớp 6 chọn lọc, chi tiết khác:
- Bài 11: Dấu hiệu chia hết cho 2, cho 5
- Bài 12: Dấu hiệu chia hết cho 3, cho 9
- Bài 13: Ước và bội
- Bài 14: Số nguyên tố. Hợp số. Bảng số nguyên tố
Xem thêm các loạt bài Để học tốt Toán lớp 6 hay khác:
Tủ sách VIETJACK shopee lớp 6-8 cho phụ huynh và giáo viên (cả 3 bộ sách):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Loạt bài Giải bài tập sách bài tập Toán 6 | Giải SBT Toán 6 của chúng tôi được biên soạn bám sát nội dung sách bài tập Toán 6 Tập 1 và Tập 2.
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải sgk Tiếng Anh 6 Global Success
- Giải sgk Tiếng Anh 6 Friends plus
- Giải sgk Tiếng Anh 6 Smart World
- Giải sgk Tiếng Anh 6 Explore English
- Lớp 6 - Kết nối tri thức
- Soạn Văn 6 (hay nhất) - KNTT
- Soạn Văn 6 (ngắn nhất) - KNTT
- Giải sgk Toán 6 - KNTT
- Giải sgk Khoa học tự nhiên 6 - KNTT
- Giải sgk Lịch Sử 6 - KNTT
- Giải sgk Địa Lí 6 - KNTT
- Giải sgk Giáo dục công dân 6 - KNTT
- Giải sgk Hoạt động trải nghiệm 6 - KNTT
- Giải sgk Tin học 6 - KNTT
- Giải sgk Công nghệ 6 - KNTT
- Giải sgk Âm nhạc 6 - KNTT
- Lớp 6 - Chân trời sáng tạo
- Soạn Văn 6 (hay nhất) - CTST
- Soạn Văn 6 (ngắn nhất) - CTST
- Giải sgk Toán 6 - CTST
- Giải sgk Khoa học tự nhiên 6 - CTST
- Giải sgk Lịch Sử 6 - CTST
- Giải sgk Địa Lí 6 - CTST
- Giải sgk Giáo dục công dân 6 - CTST
- Giải sgk Công nghệ 6 - CTST
- Giải sgk Hoạt động trải nghiệm 6 - CTST
- Giải sgk Âm nhạc 6 - CTST
- Lớp 6 - Cánh diều
- Soạn Văn 6 Cánh diều (hay nhất)
- Soạn Văn 6 Cánh diều (ngắn nhất)
- Giải sgk Toán 6 - Cánh diều
- Giải sgk Khoa học tự nhiên 6 - Cánh diều
- Giải sgk Lịch Sử 6 - Cánh diều
- Giải sgk Địa Lí 6 - Cánh diều
- Giải sgk Giáo dục công dân 6 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 6 - Cánh diều
- Giải sgk Tin học 6 - Cánh diều
- Giải sgk Công nghệ 6 - Cánh diều
- Giải sgk Âm nhạc 6 - Cánh diều