Công thức tính diện tích hình bình hành đầy đủ (có giải chi tiết)
Công thức tính diện tích hình bình hành (siêu hay)
Bài viết Công thức tính diện tích hình bình hành hay, chi tiết Toán 8 hay nhất gồm 2 phần: Lý thuyết và Các ví dụ áp dụng công thức trong bài có lời giải chi tiết giúp học sinh dễ học, dễ nhớ Công thức tính diện tích hình bình hành hay, chi tiết.
I. Lí thuyết
Diện tích hình bình hành bằng tích của một cạnh nhân với chiều cao ứng với cạnh đó
S = a.h với a là độ dài cạnh đáy, h là độ dài chiều cao tương ứng.
Cho hình bình hành ABCD có CD = AB = a, đường cao AH = h. Diện tích hình bình hành là:
(đơn vị diện tích)
II. Các ví dụ:
Ví dụ 1: Tính số đo góc của hình bình hành ABCD có diện tích là , AB = 10cm, AD = 6cm, .
Lời giải:
Kẻ AH là đường cao của hình bình hành, AH vuông góc với CD tại H.
Vì ABCD là hình bình hành nên AB = CD = 10cm; BC = AD = 6cm.
Ta có:
(1)
Gọi E là trung điểm của AD nên EA = ED = 3cm (2)
Xét tam giác AHD vuông tại H, có E là trung điểm của AD nên HE là đường trung tuyến ứng với cạnh huyền.
(3)
Từ (1); (2); (3)
Tam giác AHE là tam giác đều
Xét tam giác AHD có:
(định lý tổng ba góc trong một tam giác).
Vậy .
Ví dụ 2: Cho hình bình hành ABCD, M là trung điểm của AD, qua M kẻ đường thẳng d cắt AB, CD lần lượt tại E và F. Kẻ MH vuông góc với BC tại H.
Chứng minh: .
Lời giải:
Vì ABCD là hình bình hành nên AB // CD mà E thuộc AB, F thuộc CD nên AE // DF
(hai góc so le trong)
Vì M là trung điểm của AD nên AM = MD
Xét tam giác AEM và tam giác DFM có:
(chứng minh trên)
AM = DM (chứng minh trên)
(hai góc đối đỉnh)
Do đó: (g – c - g)
(1)
Ta có:
(2)
(3)
Từ (1); (2); (3) (4)
Kẻ AK vuông góc với BC tại K
Vì AK vuông góc với BC nên AK là đường cao của hình bình hành ABCD.
Lại có AK vuông góc với BC; MH vuông góc với BC nên MH // AK
Xét tứ giác AKHM có:
AK // MH (chứng minh trên)
AM //HK (do ABCD là hình bình hành)
Do đó tứ giác AKHM là hình bình hành
Ta có:
(mà AK = MH)
(5)
Từ (4) và (5) (điều phải chứng minh).
Xem thêm các Công thức Toán lớp 8 quan trọng hay khác:
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Đề thi lớp 1 (các môn học)
- Đề thi lớp 2 (các môn học)
- Đề thi lớp 3 (các môn học)
- Đề thi lớp 4 (các môn học)
- Đề thi lớp 5 (các môn học)
- Đề thi lớp 6 (các môn học)
- Đề thi lớp 7 (các môn học)
- Đề thi lớp 8 (các môn học)
- Đề thi lớp 9 (các môn học)
- Đề thi lớp 10 (các môn học)
- Đề thi lớp 11 (các môn học)
- Đề thi lớp 12 (các môn học)
- Giáo án lớp 1 (các môn học)
- Giáo án lớp 2 (các môn học)
- Giáo án lớp 3 (các môn học)
- Giáo án lớp 4 (các môn học)
- Giáo án lớp 5 (các môn học)
- Giáo án lớp 6 (các môn học)
- Giáo án lớp 7 (các môn học)
- Giáo án lớp 8 (các môn học)
- Giáo án lớp 9 (các môn học)
- Giáo án lớp 10 (các môn học)
- Giáo án lớp 11 (các môn học)
- Giáo án lớp 12 (các môn học)