Một số hệ thức về cạnh và đường cao trong tam giác vuông



Cách giải Một số hệ thức về cạnh và đường cao trong tam giác vuông lớp 9 với phương pháp giải chi tiết và bài tập đa dạng giúp học sinh ôn tập, biết cách làm bài tập Một số hệ thức về cạnh và đường cao trong tam giác vuông.

Một số hệ thức về cạnh và đường cao trong tam giác vuông

A. Phương pháp giải

Chuyên đề Toán lớp 9
Quảng cáo

Cho tam giác ABC vuông góc tại A, đường cao AH. Khi đó ta có:

1, c2 = ac', b2 = ab'

2, a2 = b2 + c2

3, ah = bc

4, h2 = b'.c'

5, 1/h2 = 1/b2 + 1/c2

B. Bài tập tự luận

Bài 1: Tính x, y trong các trường hợp sau

Quảng cáo
Chuyên đề Toán lớp 9 Chuyên đề Toán lớp 9

Hướng dẫn giải

a, Áp dụng định lý py-ta-go vào tam giác vuông ABC có:

BC2= AB2+ AC2

BC2= 52+ 72

BC2= 74

Suy ra BC = √74

Áp dụng hệ thức lượng vào tam giac vuông ABC: AB2 = BD.BC

=> BD = AB2/BC => x = 25/√74

DC = BC - BD = √74 - 25/√74 = 49/√74

Vậy x = 25/√74 và y = 49/√74

b) Ta có: BC= BD + DC = 2 + 6 = 8

Áp dụng hệ thức lượng ta có:

AB2= BD.BC = 2.8 = 16. Suy ra AB = 4 hay x = 4.

AC2= DC.BC = 6.8 = 48. Suy ra AC = √48 hay y = √48

Bài 2: Cho tam giác ABC vuông tại A, đường cao AH. Tính BC, AC, AH biết AB = 15cm, HC = 16cm.

Chuyên đề Toán lớp 9

Hướng dẫn giải

Quảng cáo

Áp dụng hệ thức lượng trong tam giác vuông ABC có:

AC2 = CH.BC = 16.BC

AB2 + AC2 = BC2

⇔ 152 + 16.BC = BC2

⇔ BC2 - 16.BC - 225 = 0

⇔ BC2 - 25BC + 9BC - 225 = 0

⇔ BC(BC - 25) + 9(BC - 25) = 0

⇔ (BC - 25)(BC + 9) = 0

⇔ BC = 25 hoặc BC = -9(loại)

=> AC2 = 16.BC = 16.25 = 400

=> AC = 20

+ Xét tam giác vuông ABC có: AH.BC = AB.AC (hệ thức lượng)

Vậy BC=25(cm); AC=20(cm); AH=12(cm)

Bài 3: Cho tam giác ABC có AB = 48cm, BC = 50cm, AC = 14cm. Tính độ dài phân giác giác góc C

Chuyên đề Toán lớp 9

Hướng dẫn giải

Xét tam giác ABC, ta có

BC2 = 502 = 2500

AB2 + AC2 = 142 + 482 = 2500

=> BC2 = AB2 + AC2

=> Tam giác ABC vuông tại A

Có DA/DB = CA/CB = 14/50 = 7/25 (tính chất tia phân giác)

=> DB = 25/7 DA.

Ta có DA + DB = AB

⇔ DA + 25/7 DA = AB ⇔ DA. 32/7 = 48 ⇔ DA = 10,5cm

Xét tam giác vuông ACD, theo đinh lí Pi-ta-go ta có

CD2 = AC2 + AD2 = 142 + 10,52 = 306,25 => CD = 17,5cm

Bài 4: Cho tam giác ABC vuông tại A, AB=24cm, AC=32cm. Đường trung trực của BC cắt AC, BC theo thứ tự D và E. Tính DE.

Chuyên đề Toán lớp 9

Hướng dẫn giải

Quảng cáo

Xét tam giác vuông ABC, ta có:

BC2 = AB2+ AC2 ( theo định lý py-ta-go)

BC2 = 242+ 322

BC2 = 1600

BC = 40(cm)

EC = BC : 2 = 40 : 2 = 20(cm)

Xét tam giác vuông ACB và tam giác vuông ECD có:

Có ∠A = ∠E = 90o

∠C chung

=> Tam giác ACB ∾ tam giác ECD (g.g)

=> AC/EC = AB/ED

=> ED = AB.EC/AC = 15cm

Vậy ED = 15cm

C. Bài tập tự luyện

Bài 1. Cho tam giác ABC vuông tại A, đường cao AH.

a) Cho biết AH = 6 cm, BH = 4,5 cm. Tính độ dài các đoạn thẳng AB, AC, BC, HC.

b) Cho biết AB = 6 cm, BH = 3 cm. Tính độ dài các đoạn thẳng AH, AC, CH.

Bài 2. Cho tam giác ABC vuông tại A, đường cao AH. Tính diện tích tam giác ABC biết AH = 12 cm và BH = 34AH.

Bài 3. Cho tam giác vuông với các cạnh góc vuông là 7 và 24. Kẻ đường cao ứng với cạnh huyền. Tính độ dài đường cao và các đoạn thẳng mà đường cao đó chia ra trên cạnh huyền.

Bài 4. Cho tam giác ABC vuông tại A, đường cao AH. Biết ABAC=57 và AH = 15 cm. Tính độ dài đoạn thẳng HB và HC.

Bài 5. Cho ABCD là hình thang vuông tại A và D. Đường chéo BD ⊥ BC. Biết AD = 12 cm và DC = 25 cm. Tính độ dài AB, BC và BD.

Tham khảo thêm các Chuyên đề Toán lớp 9 khác:

Mục lục các Chuyên đề Toán lớp 9:

ĐỀ THI, GIÁO ÁN, SÁCH ĐỀ THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 9

Bộ giáo án, bài giảng powerpoint, đề thi dành cho giáo viên và sách dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.




Giải bài tập lớp 9 sách mới các môn học
Tài liệu giáo viên