So sánh hai số thực



So sánh hai số thực

A. Phương pháp giải

Phương pháp giải:

Dựa vào tính chất: Nếu a,b ≥ 0 thì a < b ⇔ √a < √b

Quảng cáo

C. Bài tập tự luận

Bài 1: Không dùng máy tính, hãy so sánh:

1, 8 và √65.

2, √15 -1 và √10

3, 3√3 - 2√2 và 2

4, 3√12 và 2√26

5, 4 - 2√2 và 3 - √3

6, 1 + √2 + √5 + √6 và √35

7, 2 + √3 và 5 - √2

Hướng dẫn giải

Quảng cáo

1, Ta có 8 = √64. Vì √64 < √65 nên 8 < √65 .

2, Ta có √15 - 1 < √16 - 1 = 4 - 1 = 3

√10 > √9 = 3

Vậy √15 - 1 < √10.

3, Ta có 3√3 > 2√2 => 3√3 - 2√2 > 0 và 2 > 0

Giả sử 3√3 - 2√2 > 2 ⇔ (3√3 - 2√2)2 > 22

⇔ 35 - 12√6 > 4

⇔ 31 > 12√6 ⇔ √961 > √864.

4, Giả sử 3√12 > 2√26 ⇔ √108 > √104 (bất đẳng thức đúng)

Vậy 3√12 > 2√26

5, Giả sử 4 - 2√2 > 3 - √3 ⇔ 4 - 3 > 2√2 - √3 ⇔ 1 > 2√2 - √3

Vì 2√2 = 8 > √3 nên: 2√2 - √3 > 0. Do đó 12 > (2√2 - √3)2

Quảng cáo

⇔ 1 > 11 - 4√6 ⇔ 4√6 > 10

⇔ √96 > √100 (bất đẳng thức sai).

Vậy 4 - 2√2 < 3 - √3 .

6, Vì √2 > 1; √5 > 2; √6 > 2

=> 1 + √2 + √5 + √6 > 1 + 1 + 2 + 2

=> 1 + √2 + √5 + √6 > 6

=> 1 + √2 + √5 + √6 > √36

Mà √36 > √35 nên 1 + √2 + √5 + √6 > √35

7, Giả sử 2 + √3 < 5 - √2 ⇔ √3 + √2 < 5 - 2

⇔ (√3 + √2)2 < 32

⇔ 5 + 2√6 < 9 ⇔ 2√6 < 4 ⇔ √6 < 2 ⇔ 6 < 4 (bất đẳng thức sai)

Vậy 2 + √3 > 5 - √2

Quảng cáo

Tham khảo thêm các Chuyên đề Toán lớp 9 khác:

Mục lục các Chuyên đề Toán lớp 9:

KHÓA HỌC GIÚP TEEN 2005 ĐẠT 9-10 LUYỆN THI LỚP 10

Đăng ký học thử khóa học bởi các thầy cô giỏi bằng cách inbox page Học cùng VietJack

Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.