Độ dài đường tròn
Cách giải Độ dài đường tròn lớp 9 với phương pháp giải chi tiết và bài tập đa dạng giúp học sinh ôn tập, biết cách làm bài tập Độ dài đường tròn.
Độ dài đường tròn
A. Phương pháp giải
1. Độ dài C (chu vi) của một đường tròn bán kính R được tính theo công thức: C= 2πd
Nếu gọi d là độ dài đường kính của đường tròn (d = 2π) thì C = π.d trong đó π ≈ 3,14
2. Trên đường tròn bán kính R, độ dài l của một cung no được tính theo công thức: l ≈ πRn/180 .
B. Bài tập tự luận
Bài 1: Tính độ dài đường tròn ngoại tiếp tam giác đều có cạnh 5cm.
Hướng dẫn giải
Giả sử ΔABC đều cạnh 5cm nội tiếp (O; R).
Nối OA cắt BC tại H => AH ⊥ BC và H là trung điểm của BC.
ΔAHB vuông tại H nên: AH2 = AB2 - BH2 = 52 - (5/2)2 = 75/4
=> AH = 5√3 /2 (cm)
Vì ΔABC đều có O là tâm đường tròn ngoại tiếp nên O cũng là trọng tâm của tam giác đó, do đó:
OA = 2/3 AH = 2/3 . 5√3/2 => R = OA = 5√3/3
Độ dài đường tròn ngoại tiếp ΔABC là:
C = 2πR = 10√5 π/3 ≈ 54,39(cm)
Bài 2: Cho hai đường tròn đồng tâm O có bán kính lần lượt là R1 = 3cm; R2 = 6cm. Một dây AB của đường tròn (O;R1) tiếp xúc với đường tròn (O;R2) tại C.
a) Tính độ dài cung nhỏ AB của đường tròn (O;R2) .
b) Tính độ dài đường tròn đường kính AB.
Hướng dẫn giải
a) Vì tiếp tuyến tại C với đường tròn (O;R1) nên OC ⊥ AB
Tam giác OAC vuông tại C có:
cos ∠AOC = OC/OA = 1/2
=> ⊥AOC = 60o => ∠AOB = 120o
Vậy độ dài cung AB của đường tròn (O;R2) là:
I = πRn/180 ≈ 12,56 (cm)
b) Vì tam giác OAC vuông tại C nên:
AC2 = OA2 - OC2 = 36 - 9 = 27
=> AC = 3√3 (cm)
Trong đường tròn (O;R2) ta có: OC ⊥ AB => C là trung điểm của AB nên đường tròn đường kính AB có tâm là C và bán kính R= AC = 3√3 (cm). Vậy độ dài của đường tròn đường kính AB là:
C= 2πR ≈ 32,63(cm2)
Tham khảo thêm các Chuyên đề Toán lớp 9 khác:
Mục lục các Chuyên đề Toán lớp 9:
- Chuyên đề Đại Số 9
- Chuyên đề: Căn bậc hai
- Chuyên đề: Hàm số bậc nhất
- Chuyên đề: Hệ hai phương trình bậc nhất hai ẩn
- Chuyên đề: Phương trình bậc hai một ẩn số
- Chuyên đề Hình Học 9
- Chuyên đề: Hệ thức lượng trong tam giác vuông
- Chuyên đề: Đường tròn
- Chuyên đề: Góc với đường tròn
- Chuyên đề: Hình Trụ - Hình Nón - Hình Cầu
Tủ sách VIETJACK luyện thi vào 10 cho 2k10 (2025):
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Lớp 9 Kết nối tri thức
- Soạn văn 9 (hay nhất) - KNTT
- Soạn văn 9 (ngắn nhất) - KNTT
- Giải sgk Toán 9 - KNTT
- Giải sgk Khoa học tự nhiên 9 - KNTT
- Giải sgk Lịch Sử 9 - KNTT
- Giải sgk Địa Lí 9 - KNTT
- Giải sgk Giáo dục công dân 9 - KNTT
- Giải sgk Tin học 9 - KNTT
- Giải sgk Công nghệ 9 - KNTT
- Giải sgk Hoạt động trải nghiệm 9 - KNTT
- Giải sgk Âm nhạc 9 - KNTT
- Giải sgk Mĩ thuật 9 - KNTT
- Lớp 9 Chân trời sáng tạo
- Soạn văn 9 (hay nhất) - CTST
- Soạn văn 9 (ngắn nhất) - CTST
- Giải sgk Toán 9 - CTST
- Giải sgk Khoa học tự nhiên 9 - CTST
- Giải sgk Lịch Sử 9 - CTST
- Giải sgk Địa Lí 9 - CTST
- Giải sgk Giáo dục công dân 9 - CTST
- Giải sgk Tin học 9 - CTST
- Giải sgk Công nghệ 9 - CTST
- Giải sgk Hoạt động trải nghiệm 9 - CTST
- Giải sgk Âm nhạc 9 - CTST
- Giải sgk Mĩ thuật 9 - CTST
- Lớp 9 Cánh diều
- Soạn văn 9 Cánh diều (hay nhất)
- Soạn văn 9 Cánh diều (ngắn nhất)
- Giải sgk Toán 9 - Cánh diều
- Giải sgk Khoa học tự nhiên 9 - Cánh diều
- Giải sgk Lịch Sử 9 - Cánh diều
- Giải sgk Địa Lí 9 - Cánh diều
- Giải sgk Giáo dục công dân 9 - Cánh diều
- Giải sgk Tin học 9 - Cánh diều
- Giải sgk Công nghệ 9 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 9 - Cánh diều
- Giải sgk Âm nhạc 9 - Cánh diều
- Giải sgk Mĩ thuật 9 - Cánh diều