Tìm điều kiện để hàm số là hàm bậc nhất. Hàm số đồng biến, nghịch biến



Tìm điều kiện để hàm số là hàm bậc nhất. Hàm số đồng biến, nghịch biến

A. Phương pháp giải

Hàm số y=ax+b là hàm số bậc nhất ⇔ a ≠ 0.

Hàm số y=ax+b (với a ≠ 0)

Quảng cáo

+ Đồng biên trên R, khi a > 0.

+ Nghịch biến trên R, khi a < 0.

B. Bài tập tự luận

Bài 1:

Tìm k để các hàm số sau:

a, y= 5x - (2-x)k đồng biến, nghịch biến.

b, y= (k2 - 4)x - 2 đồng biến.

c, y= (-k2 + k - 1)x - 7 nghịch biến.

d, y= (4 - 4k + k2)x + 2 đồng biến.

Quảng cáo

Hướng dẫn giải

a, y= 5x - (2-x)k = 5x - 2k + k.x = (5+k)x - 2k

Vậy hàm số có hệ số a= 5+k. Khi đó:

+ Hàm số đồng biến a > 0 ⇔ 5 + k > 0 ⇔ k > -5

+ Hàm số nghịch biến a < 0 ⇔ 5 + k < 0 ⇔ k < -5.

Chuyên đề Toán lớp 9

Bài 2: Với những giá trị nào của m thì hàm số sau là hàm số bậc nhất?

a, y= mx - 2(x-m)

Chuyên đề Toán lớp 9

d, y= (m2 - 3m + 2)x2 + 2(m-2)(m+1)x - 3m - 2.

Hướng dẫn giải

Quảng cáo

a) Hàm số y = mx - 2(x-m) = (m-2)x + 2m có hệ số a=m-2.

Vậy hàm số y = mx - 2(x-m) là hàm số bậc nhất ⇔ a ≠ 0 ⇔ m - 2 ≠ 0 ⇔ m ≠ 2.

b)

Chuyên đề Toán lớp 9

Vậy m > 2 và m ≠ 6.

c)

Chuyên đề Toán lớp 9

Vậy m ≠ ± 1

d)

Chuyên đề Toán lớp 9

Vậy m = 1

Bài 3: Cho hàm số Chuyên đề Toán lớp 9.Với gía trị nào của m thì :

a, Hàm số đã cho là hàm bậc nhất

b, Hàm số đã cho đồng biến

c, Hàm số đã cho nghịch biến

Hướng dẫn giải

Quảng cáo

Hàm số đã cho có hệ số a= 3 - √(m+2).

a, Hàm số đã cho là hàm bậc nhất ⇔ a ≠ 0 ⇔ 3 - √(m+2) ≠ 0 ⇔ √(m+2) ≠ 3

⇔ m + 2 ≠ 9 ⇔ m ≠ 7

Vậy m ≠ 7

b, Hàm số đã cho đồng biến khi a > 0 ↔ 3 - √(m+2) > 0 ⇔ √(m+2) < 3

⇔ 0 ≤ m + 2 < 9 ⇔ -2 ≤ m < 7

Vậy -2 ≤ m < 7

c, Hàm số đã cho nghịch biến khi a < 0 3 - √(m+2) < 0 ⇔ √(m+2) > 3

⇔ m + 2 >; 9 ⇔ m > 7

Vậy m > 7

Tham khảo thêm các Chuyên đề Toán lớp 9 khác:

Mục lục các Chuyên đề Toán lớp 9:

KHÓA HỌC GIÚP TEEN 2005 ĐẠT 9-10 LUYỆN THI LỚP 10

Đăng ký học thử khóa học bởi các thầy cô giỏi bằng cách inbox page Học cùng VietJack

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.