Công thức liên hệ đường kính và dây cung đầy đủ (siêu hay)



Công thức liên hệ đường kính và dây cung đầy đủ (siêu hay)

Bài viết Công thức liên hệ đường kính và dây cung đầy đủ, chi tiết Toán lớp 9 hay nhất gồm 2 phần: Lý thuyết và Các ví dụ áp dụng công thức trong bài có lời giải chi tiết giúp học sinh dễ học, dễ nhớ Công thức liên hệ đường kính và dây cung đầy đủ, chi tiết.

Quảng cáo

I. Lý thuyết:

- Trong các dây của đường tròn đường kính là dây dài nhất.

Công thức liên hệ đường kính và dây cung đầy đủ (siêu hay) (ảnh 1)

Cho đường tròn tâm (O) đường kính AB, dây CD.

Ta có: CDAB

Dấu “=” xảy ra khi dây CD cũng là đường kính của đường tròn.

- Trong một đường tròn, đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy.

- Trong một đường tròn, đường kính đi qua trung điểm của dây không đi qua tâm thì vuông góc với dây ấy.

Công thức liên hệ đường kính và dây cung đầy đủ (siêu hay) (ảnh 1)

Cho đường tròn tâm (O) đường kính AB, dây CD không đi qua tâm, I là trung điểm của CD. Khi đó:

+ Nếu AB vuông góc với CD thì AB đi qua I.

+ Nếu AB đi qua I thì AB vuông góc với CD.

II. Các ví dụ:

Ví dụ 1: Cho đường tròn tâm (O; 3cm), dây CD không đi qua tâm. Tính khoảng cách từ tâm O đến dây CD biết CD = 4cm.

Lời giải:

Gọi I là trung điểm của CD.

Vẽ đường kính AB đi qua trung điểm I của CD.

Vì AB đi qua trung điểm I của CD nên AB vuông góc với CD tại I (tính chất)

Khoảng cách từ tâm O của đường tròn đến CD là OI.

Vì I là trung điểm của CD nên IC = ID = 2cm.

Ta có: OC = R = 3cm.

Xét tam giác OIC vuông tại I ta có:

OC2=OI2+IC2(định lý Py – ta – go)

32=OI2+22

9=OI2+4

OI2=94

OI2=5

OI=5cm.

Ví dụ 2: Cho nửa đường tròn (O) đường kính AB và một dây cung CD. Kẻ AE và BF vuông góc với CD lần lượt tại E và F. Chứng minh CE = BF.

Lời giải:

Công thức liên hệ đường kính và dây cung đầy đủ (siêu hay) (ảnh 1)

Gọi H là trung điểm của CD

 OHCD  OHEF

Vì BFEFAEEFAE // BF

Xét tứ giác ABFE có:

AE // BF

 Tứ giác ABFE là hình thang

Lại có OHEF nên OH // AE // BF

Mà OH đi qua trung điểm O của AB nên OH đi qua trung điểm của EF

H là trung điểm của EF

 HE = HF

Ta có:

HE=EC+CHHF=DF+HD

EC=HECHDF=HFHD

Mà HE = HF (cmt) ; CH = HD (H là trung điểm của CD)

Do vậy EC = DF (điều phải chứng minh).

Xem thêm các Công thức Toán lớp 9 quan trọng hay khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official




Đề thi, giáo án các lớp các môn học
Tài liệu giáo viên