Công thức liên hệ giữa dây và khoảng cách từ tâm đến dây hay, chi tiết - Toán lớp 9



Công thức liên hệ giữa dây và khoảng cách từ tâm đến dây hay, chi tiết

Bài viết Công thức liên hệ giữa dây và khoảng cách từ tâm đến dây hay, chi tiết Toán lớp 9 hay nhất gồm 2 phần: Lý thuyết và Các ví dụ áp dụng công thức trong bài có lời giải chi tiết giúp học sinh dễ học, dễ nhớ Công thức liên hệ giữa dây và khoảng cách từ tâm đến dây hay, chi tiết.

Quảng cáo

I. Lý thuyết

Cho đường tròn (O), hai dây AB, DC của đường tròn.

+ Nếu dây AB = CD thì khoảng cách từ O đến AB bằng khoảng cách từ O đến CD.

+ Nếu khoảng cách từ O đến AB bằng khoảng cách từ O đến CD thì dây AB = CD.

Công thức liên hệ giữa dây và khoảng cách từ tâm đến dây hay, chi tiết | Toán lớp 9 (ảnh 1)

Xét hình vẽ trên:

 Nếu AB = CD thì OE = OF

 Nếu OE = OF thì AB = CD

- Trong hai dây của một đường tròn

+ Dây nào có độ dài lớn hơn thì dây đó gần tâm hơn.

+ Dây nào gần tâm hơn thì dây đó có độ dài lớn hơn.

Công thức liên hệ giữa dây và khoảng cách từ tâm đến dây hay, chi tiết | Toán lớp 9 (ảnh 1)

Xét hình vẽ:

Nếu AB > CD thì OE < OF

Nếu OE < OF thì AB > CD

II. Ví dụ:

Ví dụ 1: Trong các khẳng định sau đây, câu nào đúng câu nào sai:

a) Hai dây có độ dài bằng nhau thì khoảng cách từ tâm đến mỗi dây đó là bằng nhau.

b) Dây AB lớn hơn dây CD thì khoảng cách từ tâm đến dây AB lớn hơn khoảng cách từ tâm đến dây CD.

c) AB, CD là hai dây của đường tròn, khoảng cách từ tâm đến AB và CD lần lượt là 4cm và 5cm nên dây AB lớn hơn dây CD.

Lời giải:

a) đúng vì theo tính chất hai dây bằng nhau.

b) sai vì dây AB lớn hơn dây CD nên dây AB gần tâm hơn dây CD do đó khoảng cách từ tâm đến dây AB nhỏ hơn khoảng cách từ tâm đến dây CD.

c) đúng vì khoảng cách từ tâm đến dây AB nhỏ hơn khoảng cách từ tâm đến dây CD nên dây AB lớn hơn dây CD.

Ví dụ 2: Cho đường tròn (O) đường kính AB và dây CD, vẽ hai dây AD và BC song song với nhau. Chứng minh:

a) AC = BD;

b) CD là đường kính của (O).

Lời giải:

Công thức liên hệ giữa dây và khoảng cách từ tâm đến dây hay, chi tiết | Toán lớp 9 (ảnh 1)

a) Gọi E là trung điểm của AD; G là trung điểm của BC

OEADOGBC (tính chất)

Mà AD // BC nên O, E, G thẳng hàng

Xét ΔAOEΔBOG có

OA = OB  (bán kính)

AOE^=BOG^ (hai góc đối đỉnh)

OEA^=OGB^=90°

Do đó ΔAOE = ΔBOG(cạnh huyền – góc nhọn)

AE = BG mà E là trung điểm của AD, G là trung điểm của BC

AD = BC.

Xét tứ giác ADBC có:

AD = BC (chứng minh trên)

AD // BC (giả thuyết)

Do đó tứ giác ADBC là hình bình hành

AC = BD (tính chất).

b) Vì ADBC là hình bình hành nên hai đường chéo BA và CD cắt nhau tại trung điểm mỗi đường.

Mà O là trung điểm AB nên O cũng là trung điểm của CD

O, C, D thẳng hàng

CD là đường kính của đường tròn (O).

Xem thêm các Công thức Toán lớp 9 quan trọng hay khác:

ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12

Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official




Đề thi, giáo án các lớp các môn học
Tài liệu giáo viên